IDEAS home Printed from https://ideas.repec.org/a/arp/srarsr/2022p5-32.html
   My bibliography  Save this article

Geospatial Analysis of Soil Erosion Susceptibility and Causative Factors in Anambra State, South East, Nigeria

Author

Listed:
  • Romanus Udegbunam Ayadiuno

    (Department of Geography, University of Nigeria, Nsukka Enugu State, Nigeria)

  • Dominic Chukwuka Ndulue

    (Department of Geography, University of Nigeria, Nsukka Enugu State, Nigeria)

  • Chinemelu Cosmas Ndichie

    (Department of Geography, University of Nigeria, Nsukka Enugu State, Nigeria)

  • Arinze Tagbo Mozie

    (Department of Geography, University of Nigeria, Nsukka Enugu State, Nigeria)

  • Philip O. Phil-Eze

    (Department of Geography, University of Nigeria, Nsukka Enugu State, Nigeria)

  • Anthony Chukwuemeka Onyekwelu

    (Department of Geography, University of Nigeria, Nsukka Enugu State, Nigeria)

Abstract

Land degradation is a function of soil erosion leading to soil loss and reduction in crop productivity as well as other socio-economic activities. The menace of soil erosion is challenging due to diverse factors including advertent and inadvertent anthropogenic activities. This study looks at soil erosion susceptibility and causative factors in Anambra State, both static and dynamic with the intent of identifying them, investigating spatial variability of soil loss, relate erodibility to soil properties and causative factors to soil erosion. Eight (8) prominent causative factors (CFs), were identified. These causative factors (CFs) were analyzed using ArcGIS 10.2. Sixty (60) soil samples were extracted randomly, analyzed, and tested. The study identified CFs such as Drainage Density, Erosion Density, Lineament Density, Slope Length, Land Surface Temperature, and Rainfall Erosivity, which contribute to Soil Erodibility (K - Factor). Land Surface Temperature, Soil Moisture Index, Rainfall Erosivity, and Normalized Difference Vegetation Index contributed to the loss of 8.97 ton/ha/yr, 9.1288 ton/ha/yr, 1,1134.7 ton/ha/yr, and 0.245 ton/ha/yr respectively to erosion in Anambra State. Conclusively, the dynamic causative factors influence soil susceptibility and trigger erosion in the State.

Suggested Citation

  • Romanus Udegbunam Ayadiuno & Dominic Chukwuka Ndulue & Chinemelu Cosmas Ndichie & Arinze Tagbo Mozie & Philip O. Phil-Eze & Anthony Chukwuemeka Onyekwelu, 2022. "Geospatial Analysis of Soil Erosion Susceptibility and Causative Factors in Anambra State, South East, Nigeria," Scientific Review, Academic Research Publishing Group, vol. 8(1), pages 5-32, 01-2022.
  • Handle: RePEc:arp:srarsr:2022:p:5-32
    DOI: 10.32861/sr.81.5.32
    as

    Download full text from publisher

    File URL: https://www.arpgweb.com/pdf-files/sr8(1)5-32.pdf
    Download Restriction: no

    File URL: https://www.arpgweb.com/journal/10/archive/01-2022/1/8
    Download Restriction: no

    File URL: https://libkey.io/10.32861/sr.81.5.32?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Middleton, H. E., 1930. "Properties of Soils Which Influence Soil Erosion," Technical Bulletins 159441, United States Department of Agriculture, Economic Research Service.
    2. Kemper, W. D. & Koch, E.J., 1966. "Aggregate Stability of Soils from Western United States and Canada," Technical Bulletins 171386, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segoli, M. & De Gryze, S. & Dou, F. & Lee, J. & Post, W.M. & Denef, K. & Six, J., 2013. "AggModel: A soil organic matter model with measurable pools for use in incubation studies," Ecological Modelling, Elsevier, vol. 263(C), pages 1-9.
    2. Orestis Kairis & Chrysoula Aratzioglou & Athanasios Filis & Michel van Mol & Costas Kosmas, 2021. "The Effect of Land Management Practices on Soil Quality Indicators in Crete," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    3. Masoomeh Soleimany & Jamshid Eslamdoust & Moslem Akbarinia & Yahya Kooch, 2021. "Soil aggregate stability index and particulate organic matter in response to differently afforested lands in the temperate regions of Iran," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(8), pages 376-384.
    4. Esther O. Thomsen & Jennifer R. Reeve & Catherine M. Culumber & Diane G. Alston & Robert Newhall & Grant Cardon, 2019. "Simple Soil Tests for On-Site Evaluation of Soil Health in Orchards," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    5. Gábor Csitári & Zoltán Tóth & Mónika Kökény, 2021. "Effects of Organic Amendments on Soil Aggregate Stability and Microbial Biomass in a Long-Term Fertilization Experiment (IOSDV)," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    6. Bharat Bhushan Vashisht & Bijesh Maharjan & Sandeep Sharma & Samanpreet Kaur, 2020. "Soil Quality and Its Potential Indicators under Different Land Use Systems in the Shivaliks of Indian Punjab," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    7. Valter S. Marques & Marcos B. Ceddia & Mauro A. H. Antunes & Daniel F. Carvalho & Jamil A. A. Anache & Dulce B. B. Rodrigues & Paulo Tarso S. Oliveira, 2019. "USLE K-Factor Method Selection for a Tropical Catchment," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    8. Valero, Antonio & Palacino, Bárbara & Ascaso, Sonia & Valero, Alicia, 2022. "Exergy assessment of topsoil fertility," Ecological Modelling, Elsevier, vol. 464(C).
    9. Clancy, S.A. & Gardner, J.C. & Grygiel, C.E. & Biondini, M.E. & Johnson, G.K., 1993. "Farming Practices for a Sustainable Agriculture in North Dakota," Miscellaneous Publications 231439, North Dakota State University, Department of Agribusiness and Applied Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arp:srarsr:2022:p:5-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Managing Editor (email available below). General contact details of provider: http://arpgweb.com/index.php?ic=journal&journal=10&info=aims .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.