IDEAS home Printed from https://ideas.repec.org/a/abr/oactbb/v3y2020i2p325-333.html

Seismic Nowcasting Using Shannon Information Entropy with Copula Models and Artificial Neural Networks

Author

Listed:
  • Moatafa Allameh Zadeh

    (IIEES, 21 Arghavan, Farmaniyeh, Tehran, Iran)

Abstract

Recent advances made in Nowcasting Earthquakes using clustering analysis techniques are being run by numerical simulations...

Suggested Citation

  • Moatafa Allameh Zadeh, 2020. "Seismic Nowcasting Using Shannon Information Entropy with Copula Models and Artificial Neural Networks," Current Trends On Biostatistics & Biometrics, Lupine Publishers, LLC, vol. 3(2), pages 325-333, August.
  • Handle: RePEc:abr:oactbb:v:3:y:2020:i:2:p:325-333
    DOI: 10.32474/CTBB.2020.03.000156
    as

    Download full text from publisher

    File URL: https://lupinepublishers.com/biostatistics-biometrics-journal/pdf/CTBB.MS.ID.000156.pdf
    Download Restriction: no

    File URL: https://lupinepublishers.com/biostatistics-biometrics-journal/fulltext/seismic-nowcasting-using-shannon-information-entropy-with-copula-models-and-artificial-neural-networks.ID.000156.php
    Download Restriction: no

    File URL: https://libkey.io/10.32474/CTBB.2020.03.000156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Partha Deb & Pravin K. Trivedi & David M. Zimmer, 2014. "Cost‐Offsets Of Prescription Drug Expenditures: Data Analysis Via A Copula‐Based Bivariate Dynamic Hurdle Model," Health Economics, John Wiley & Sons, Ltd., vol. 23(10), pages 1242-1259, October.
    2. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    3. Jean-François Plante, 2017. "Rank correlation under categorical confounding," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
    4. Kimberly F. Sellers & Tong Li & Yixuan Wu & Narayanaswamy Balakrishnan, 2021. "A Flexible Multivariate Distribution for Correlated Count Data," Stats, MDPI, vol. 4(2), pages 1-19, April.
    5. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    6. Pinto Da Costa, Joaquim & Roque, Luís A.C. & Soares, Carlos, 2015. "The weighted rank correlation coefficient rW2 in the case of ties," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 20-26.
    7. Balkema, A.A. & Embrechts, P. & Nolde, N., 2010. "Meta densities and the shape of their sample clouds," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1738-1754, August.
    8. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    9. Kolev, Nikolai, 2016. "Characterizations of the class of bivariate Gompertz distributions," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 173-179.
    10. Gery Geenens, 2024. "(Re-)Reading Sklar (1959)—A Personal View on Sklar’s Theorem," Mathematics, MDPI, vol. 12(3), pages 1-7, January.
    11. Alfonso Russo & Alessio Farcomeni, 2024. "A copula formulation for multivariate latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 731-751, September.
    12. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    13. Johny Pambabay-Calero & Sergio Bauz-Olvera & Ana Nieto-Librero & Ana Sánchez-García & Puri Galindo-Villardón, 2021. "Hierarchical Modeling for Diagnostic Test Accuracy Using Multivariate Probability Distribution Functions," Mathematics, MDPI, vol. 9(11), pages 1-20, June.
    14. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    15. Ryan H. L. Ip & K. Y. K. Wu, 2024. "A mixture distribution for modelling bivariate ordinal data," Statistical Papers, Springer, vol. 65(7), pages 4453-4488, September.
    16. Faugeras Olivier P., 2017. "Inference for copula modeling of discrete data: a cautionary tale and some facts," Dependence Modeling, De Gruyter, vol. 5(1), pages 121-132, January.
    17. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    18. Bochao Jia & Suwa Xu & Guanghua Xiao & Vishal Lamba & Faming Liang, 2017. "Learning gene regulatory networks from next generation sequencing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1221-1230, December.
    19. Ahsan, Md. Nazmul & Emran, M. Shahe & Jiang, Hanchen & Shilpi, Forhad, 2025. "Making the most of coresident data: Credible evidence on intergenerational mobility with sibling correlation," Journal of Development Economics, Elsevier, vol. 176(C).
    20. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abr:oactbb:v:3:y:2020:i:2:p:325-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mary John (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.