IDEAS home Printed from https://ideas.repec.org/r/uwp/landec/v77y2001i3p399-422.html
   My bibliography  Save this item

Demand Specification for Municipal Water Management: Evaluation of the Stone-Geary Form

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. S. Gaudin, 2006. "Effect of price information on residential water demand," Applied Economics, Taylor & Francis Journals, vol. 38(4), pages 383-393.
  2. Marie-Estelle Binet, 2013. "The Linear Expenditure System and the Demand for Municipal Public Services: The Median Voter Specification Revisited," Urban Studies, Urban Studies Journal Limited, vol. 50(9), pages 1689-1703, July.
  3. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
  4. Havranek, Tomas & Irsova, Zuzana & Vlach, Tomas, 2016. "Publication Bias in Measuring the Income Elasticity of Water Demand," MPRA Paper 75247, University Library of Munich, Germany.
  5. Arnaud Reynaud & Denis Lanzanova & Miodrag B. Milovanovic & Ad de Roo, 2016. "Informing Water Policies with a Residential Water Demand Function: The Case of Serbia," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(2), pages 247-266, December.
  6. Dinusha Dharmaratna & Edwyna Harris, 2010. "Estimating Residential Water Demand using the Stone-Geary Functional Form: the Case of Sri Lanka," Monash Economics Working Papers 46-10, Monash University, Department of Economics.
  7. Tchigriaeva, Elena & Lott, Corey & Kimberly, Rollins, 2014. "Modeling effects of multiple conservation policy instruments and exogenous factors on urban residential water demand through household heterogeneity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170605, Agricultural and Applied Economics Association.
  8. SaÄŸlam, YiÄŸit, 2011. "Optimal Pricing of Water: Optimal Departures from the Inverse Elasticity Rule," Working Paper Series 1533, Victoria University of Wellington, School of Economics and Finance.
  9. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
  10. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
  11. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.
  12. Céline Nauges & Dale Whittington, 2010. "Estimation of Water Demand in Developing Countries: An Overview," The World Bank Research Observer, World Bank Group, vol. 25(2), pages 263-294, August.
  13. Minh Ha-Duong & Nguyen Son, 2021. "Subjective satisfaction and objective electricity poverty reduction in Vietnam, 2008-2018," Post-Print hal-03160911, HAL.
  14. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
  15. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
  16. Brännlund, Runar & Vesterberg, Mattias, 2021. "Peak and off-peak demand for electricity: Is there a potential for load shifting?," Energy Economics, Elsevier, vol. 102(C).
  17. Roberto Balado-Naves & Marian Garcia-Valiñas & David Roibas, 2023. "Efficiency, perceived prices, and household water demand: A stochastic frontier analysis for the Spanish city of Gijón," Efficiency Series Papers 2023/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
  18. Mgwele, Akhona & Girma, Hiywot Menker & Dikgang, Johane, 2021. "Measuring residential water affordability and basic water needs in South Africa," EconStor Preprints 231772, ZBW - Leibniz Information Centre for Economics.
  19. Valeria Bernardo & Xavier Fageda & Montserrat Termes, 2015. "Do droughts have long-term effects on water consumption? Evidence from the urban area of Barcelona," Applied Economics, Taylor & Francis Journals, vol. 47(48), pages 5131-5146, October.
  20. Meran Georg & von Hirschhausen Christian, 2017. "Increasing Block Tariffs in the Water Sector – An Interpretation in Terms of Social Preferences," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 17(3), pages 1-24, July.
  21. James W. Mjelde & Kannika Duangnate, 2023. "Overview of Committed Quantities in Commodity Demand Analysis with a Focus on Energy," Energies, MDPI, vol. 16(11), pages 1-17, May.
  22. Jean-Daniel Rinaudo & Noémie Neverre & Marielle Montginoul, 2012. "Simulating the Impact of Pricing Policies on Residential Water Demand: A Southern France Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2057-2068, May.
  23. David R. Bell & Ronald C. Griffin, 2011. "Urban Water Demand with Periodic Error Correction," Land Economics, University of Wisconsin Press, vol. 87(3), pages 528-544.
  24. Garcia-Valiñas, Maria A. & Athukorala, Wasantha & Wilson, Clevo & Torgler, Benno & Gifford, Robert, 2014. "Nondiscretionary residential water use: the impact of habits and water-efficient technologies," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), April.
  25. Maria A. García‐Valiñas & Roberto Martínez‐Espiñeira & Francisco González‐Gómez, 2010. "Economics of Water Reform in the Murray-Darling Basin," Centre for Water Economics, Environment and Policy Papers 1005, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
  26. Maria A. García-Valiñas & Roberto Martínez-Francisco & González-Gómez, 2010. "Water affordability: alternativem measurement and explanatory Factors in Andalusia," Centre for Water Economics, Environment and Policy Papers 1014, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
  27. René Cabral & Luciano Ayala & Victor Hugo Delgado, 2017. "Residential Water Demand and Price Perception under Increasing Block Rates," Economics Bulletin, AccessEcon, vol. 37(1), pages 508-519.
  28. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
  29. Steven Buck & Mehdi Nemati & David Sunding, 2023. "Consumer welfare consequences of the California drought conservation mandate," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(1), pages 510-533, March.
  30. Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
  31. Leroux, Anke D. & Martin, Vance L. & Zheng, Hao, 2018. "Addressing water shortages by force of habit," Resource and Energy Economics, Elsevier, vol. 53(C), pages 42-61.
  32. Abolhasani, L. & Tajabadi, M. & Shahnoushi Forushahi, N., 2018. "Price elasticity of residential water demand: a Meta analysis of studies on water demand, (case study: Iran)," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275890, International Association of Agricultural Economists.
  33. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
  34. Renzetti, Steven & Dupont, Diane P. & Chitsinde, Tina, 2015. "An empirical examination of the distributional impacts of water pricing reforms," Utilities Policy, Elsevier, vol. 34(C), pages 63-69.
  35. Griffin, Ronald C. & Mjelde, James W., 2011. "Distributing water's bounty," Ecological Economics, Elsevier, vol. 72(C), pages 116-128.
  36. Jiménez, Darío F. & Orrego, Sergio A. & Vásquez, Felipe A. & Ponce, Roberto D., 2016. "Estimación de la demanda de agua para uso residencial urbano usando un modelo discreto-continuo y datos desagregados a nivel de hogar: el caso de la ciudad de Manizales, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 153-178, December.
  37. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
  38. Marcos García-López & Borja Montano & Joaquín Melgarejo, 2020. "Water Pricing Policy as Tool to Induce Efficiency in Water Resources Management," IJERPH, MDPI, vol. 17(10), pages 1-19, May.
  39. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
  40. David Roibas & Maria A. Garcia-Valiñas & Roberto Fernandez-Llera, 2019. "Measuring the Impact of Water Supply Interruptions on Household Welfare," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 159-179, May.
  41. Eri Nakamura & Fumitoshi Mizutani, 2019. "Necessary demand and extra demand of public utility product: identification using the stochastic frontier model," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 45-64, March.
  42. Xiaojia Bao, 2016. "Water, Electricity and Weather Variability in Rural Northern China," Working Papers 2014-07-02, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  43. García-López, Marcos & Montano, Borja & Melgarejo, Joaquín, 2022. "Alternative tariff structures and household composition: Evidence from Spain's Valencia region," Utilities Policy, Elsevier, vol. 79(C).
  44. Roberto Balado-Naves & Marian Garcia-Valiñas & David Roibas, 2023. "Efficiency, perceived prices, and household water demand: A stochastic frontier analysis for the Spanish city of Gijón," Working Papers hal-04147781, HAL.
  45. Lott, Corey & Tchigriaeva, Elena & Rollins, Kimberly & Stoddard, Shawn, 2014. "Residential water demand, climate change and exogenous economic trends," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170660, Agricultural and Applied Economics Association.
  46. Guillermo Ignacio Acuña & Cristián Echeverría & Alex Godoy & Felipe Vásquez, 2020. "The role of climate variability in convergence of residential water consumption across Chilean localities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(1), pages 89-108, January.
  47. Joachim Schleich & Thomas Hillenbrand, 2019. "Residential water demand responds asymmetrically to rising and falling prices," Applied Economics, Taylor & Francis Journals, vol. 51(45), pages 4973-4981, September.
  48. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
  49. Kostas Bithas & Chrysostomos Stoforos, 2006. "Estimating Urban Residential Water Demand Determinants and Forecasting Water Demand for Athens Metropolitan Area, 2000-2010," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 4(1), pages 47-59.
  50. Zuleta Hernando, 2008. "Poor People and Risky Business," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 14(1), pages 1-18, April.
  51. Ming-Feng Hung & Bin-Tzong Chie & Huei-Chu Liao, 2020. "A Comparison of Electricity-Pricing Programs: Economic Efficiency, Cost Recovery, and Income Distribution," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(1), pages 143-163, February.
  52. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.
  53. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
  54. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
  55. Tobarra-González, Miguel Ángel, 2013. "Factores explicativos de la demanda municipal de agua y efectos en el bienestar de la política tarifaria. Una aplicación a la cuenca del Segura/Explicative Factors of Municipal Water Demand and Effect," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 31, pages 577-596, Septiembr.
  56. Roberto Martínez-Espiñeira & María Á. García-Valiñas, 2013. "Adopting versus adapting: adoption of water-saving technology versus water conservation habits in Spain," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 29(3), pages 400-414, September.
  57. Schleich, Joachim & Hillenbrand, Thomas, 2019. "Water demand responds asymmetrically to rising and falling prices," Working Papers "Sustainability and Innovation" S03/2019, Fraunhofer Institute for Systems and Innovation Research (ISI).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.