IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v54y2016icp299-308.html
   My bibliography  Save this item

The potential of agrivoltaic systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Trommsdorff, Max & Hopf, Michaela & Hörnle, Oliver & Berwind, Matthew & Schindele, Stephan & Wydra, Kerstin, 2023. "Can synergies in agriculture through an integration of solar energy reduce the cost of agrivoltaics? An economic analysis in apple farming," Applied Energy, Elsevier, vol. 350(C).
  2. Javier Padilla & Carlos Toledo & Rodolfo López-Vicente & Raquel Montoya & José-Ramón Navarro & José Abad & Antonio Urbina, 2021. "Passive Heating and Cooling of Photovoltaic Greenhouses Including Thermochromic Materials," Energies, MDPI, vol. 14(2), pages 1-22, January.
  3. Pringle, Adam M. & Handler, R.M. & Pearce, J.M., 2017. "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 572-584.
  4. Elmehdi Mouhib & Leonardo Micheli & Florencia M. Almonacid & Eduardo F. Fernández, 2022. "Overview of the Fundamentals and Applications of Bifacial Photovoltaic Technology: Agrivoltaics and Aquavoltaics," Energies, MDPI, vol. 15(23), pages 1-30, November.
  5. Arnulf Jäger-Waldau, 2020. "The Untapped Area Potential for Photovoltaic Power in the European Union," Clean Technol., MDPI, vol. 2(4), pages 1-7, October.
  6. Koami Soulemane Hayibo & Pierce Mayville & Ravneet Kaur Kailey & Joshua M. Pearce, 2020. "Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics," Energies, MDPI, vol. 13(23), pages 1-24, November.
  7. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  8. Dohlman, Erik & Maguire, Karen & Davis, Wilma V. & Husby, Megan & Bovay, John & Weber, Catharine & Lee, Yoonjung, 2024. "Trends, Insights, and Future Prospects for Production in Controlled Environment Agriculture and Agrivoltaics Systems," Economic Information Bulletin 340508, United States Department of Agriculture, Economic Research Service.
  9. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
  10. Schindele, Stephan & Trommsdorff, Maximilian & Schlaak, Albert & Obergfell, Tabea & Bopp, Georg & Reise, Christian & Braun, Christian & Weselek, Axel & Bauerle, Andrea & Högy, Petra & Goetzberger, Ado, 2020. "Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications," Applied Energy, Elsevier, vol. 265(C).
  11. Jian Chen & Lingjun Wang & Yuanyuan Li, 2022. "Research on Niche Evaluation of Photovoltaic Agriculture in China," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
  12. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
  13. Paris, Bas & Vandorou, Foteini & Balafoutis, Athanasios T. & Vaiopoulos, Konstantinos & Kyriakarakos, George & Manolakos, Dimitris & Papadakis, George, 2022. "Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  14. Cossu, Marco & Cossu, Andrea & Deligios, Paola A. & Ledda, Luigi & Li, Zhi & Fatnassi, Hicham & Poncet, Christine & Yano, Akira, 2018. "Assessment and comparison of the solar radiation distribution inside the main commercial photovoltaic greenhouse types in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 822-834.
  15. Rakeshkumar Mahto & Deepak Sharma & Reshma John & Chandrasekhar Putcha, 2021. "Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers," Land, MDPI, vol. 10(11), pages 1-28, November.
  16. Feuerbacher, Arndt & Herrmann, Tristan & Neuenfeldt, Sebastian & Laub, Moritz & Gocht, Alexander, 2022. "Estimating the economics and adoption potential of agrivoltaics in Germany using a farm-level bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  17. David Firnando Silalahi & Andrew Blakers & Matthew Stocks & Bin Lu & Cheng Cheng & Liam Hayes, 2021. "Indonesia’s Vast Solar Energy Potential," Energies, MDPI, vol. 14(17), pages 1-24, August.
  18. Hsiao, Yao-Jen & Chen, Jyun-Long & Huang, Cheng-Ting, 2021. "What are the challenges and opportunities in implementing Taiwan's aquavoltaics policy? A roadmap for achieving symbiosis between small-scale aquaculture and photovoltaics," Energy Policy, Elsevier, vol. 153(C).
  19. Ugwoke, B. & Sulemanu, S. & Corgnati, S.P. & Leone, P. & Pearce, J.M., 2021. "Demonstration of the integrated rural energy planning framework for sustainable energy development in low-income countries: Case studies of rural communities in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  20. Pascaris, Alexis S., 2021. "Examining existing policy to inform a comprehensive legal framework for agrivoltaics in the U.S," Energy Policy, Elsevier, vol. 159(C).
  21. G.-Fivos Sargentis & Paraskevi Siamparina & Georgia-Konstantina Sakki & Andreas Efstratiadis & Michalis Chiotinis & Demetris Koutsoyiannis, 2021. "Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
  22. Fernández-Solas, Álvaro & Fernández-Ocaña, Ana M. & Almonacid, Florencia & Fernández, Eduardo F., 2023. "Potential of agrivoltaics systems into olive groves in the Mediterranean region," Applied Energy, Elsevier, vol. 352(C).
  23. Poonia, Surendra & Jat, N.K. & Santra, Priyabrata & Singh, A.K. & Jain, Dilip & Meena, H.M., 2022. "Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem India," Renewable Energy, Elsevier, vol. 184(C), pages 149-163.
  24. Angel Carreño-Ortega & Emilio Galdeano-Gómez & Juan Carlos Pérez-Mesa & María Del Carmen Galera-Quiles, 2017. "Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?," Energies, MDPI, vol. 10(6), pages 1-24, May.
  25. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
  26. Feuerbacher, Arndt & Laub, Moritz & Högy, Petra & Lippert, Christian & Pataczek, Lisa & Schindele, Stephan & Wieck, Christine & Zikeli, Sabine, 2021. "An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics," Agricultural Systems, Elsevier, vol. 192(C).
  27. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
  28. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  29. Semeraro, Teodoro & Scarano, Aurelia & Santino, Angelo & Emmanuel, Rohinton & Lenucci, Marcello, 2022. "An innovative approach to combine solar photovoltaic gardens with agricultural production and ecosystem services," Ecosystem Services, Elsevier, vol. 56(C).
  30. Jaiyoung Cho & Sung Min Park & A Reum Park & On Chan Lee & Geemoon Nam & In-Ho Ra, 2020. "Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture," Energies, MDPI, vol. 13(18), pages 1-18, September.
  31. Safat Dipta, Shahriyar & Schoenlaub, Jean & Habibur Rahaman, Md & Uddin, Ashraf, 2022. "Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses," Applied Energy, Elsevier, vol. 328(C).
  32. Pascaris1, Alexis S. & Schelly, Chelsea & Rouleau, Mark & Pearce, Joshua M., 2021. "Do Agrivoltaics Improve Public Support for Solar Photovoltaic Development? Survey Says: Yes!," SocArXiv efasx, Center for Open Science.
  33. Chelsea Schelly & Don Lee & Elise Matz & Joshua M. Pearce, 2021. "Applying a Relationally and Socially Embedded Decision Framework to Solar Photovoltaic Adoption: A Conceptual Exploration," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
  34. Jian Chen & Yiping Liu & Lingjun Wang, 2019. "Research on Coupling Coordination Development for Photovoltaic Agriculture System in China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
  35. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
  36. Walston, Leroy J. & Li, Yudi & Hartmann, Heidi M. & Macknick, Jordan & Hanson, Aaron & Nootenboom, Chris & Lonsdorf, Eric & Hellmann, Jessica, 2021. "Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States," Ecosystem Services, Elsevier, vol. 47(C).
  37. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
  38. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
  39. Kim, Byungil & Kim, Changyoon & Han, SangUk & Bae, JuHyun & Jung, Jaehoon, 2020. "Is it a good time to develop commercial photovoltaic systems on farmland? An American-style option with crop price risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
  40. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
  41. Hadi A. AL-agele & Kyle Proctor & Ganti Murthy & Chad Higgins, 2021. "A Case Study of Tomato ( Solanum lycopersicon var. Legend ) Production and Water Productivity in Agrivoltaic Systems," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
  42. Manoj Kumar, Nallapaneni & Chopra, Shauhrat S., 2023. "Integrated techno-economic and life cycle assessment of shared circular business model based blockchain-enabled dynamic grapevoltaic farm for major grape growing states in India," Renewable Energy, Elsevier, vol. 209(C), pages 365-381.
  43. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
  44. Jonghan Ko & Jaeil Cho & Jinsil Choi & Chang-Yong Yoon & Kyu-Nam An & Jong-Oh Ban & Dong-Kwan Kim, 2021. "Simulation of Crop Yields Grown under Agro-Photovoltaic Panels: A Case Study in Chonnam Province, South Korea," Energies, MDPI, vol. 14(24), pages 1-16, December.
  45. Zbigniew Brodziński & Katarzyna Brodzińska & Mikołaj Szadziun, 2021. "Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland," Energies, MDPI, vol. 14(8), pages 1-17, April.
  46. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
  47. Jing, Rui & Liu, Jiahui & Zhang, Haoran & Zhong, Fenglin & Liu, Yupeng & Lin, Jianyi, 2022. "Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus," Energy, Elsevier, vol. 256(C).
  48. Lingjun Wang & Ying Wang & Jian Chen, 2019. "Assessment of the Ecological Niche of Photovoltaic Agriculture in China," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
  49. Raúl Aroca-Delgado & José Pérez-Alonso & Ángel Jesús Callejón-Ferre & Borja Velázquez-Martí, 2018. "Compatibility between Crops and Solar Panels: An Overview from Shading Systems," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
  50. Kyle W. Proctor & Ganti S. Murthy & Chad W. Higgins, 2020. "Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy," Sustainability, MDPI, vol. 13(1), pages 1-11, December.
  51. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
  52. Jeremy Wright & Jeremy Lytle & Devon Santillo & Luzalen Marcos & Kristiina Valter Mai, 2021. "Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
  53. De Angelis, Paolo & Tuninetti, Marta & Bergamasco, Luca & Calianno, Luca & Asinari, Pietro & Laio, Francesco & Fasano, Matteo, 2021. "Data-driven appraisal of renewable energy potentials for sustainable freshwater production in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  54. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
  55. Marco Hernandez Velasco, 2021. "Enabling Year-round Cultivation in the Nordics-Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral," Agriculture, MDPI, vol. 11(12), pages 1-31, December.
  56. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
  57. Taylor, M. & Pettit, J. & Sekiyama, T. & Sokołowski, M.M., 2023. "Justice-driven agrivoltaics: Facilitating agrivoltaics embedded in energy justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  58. Valle, B. & Simonneau, T. & Sourd, F. & Pechier, P. & Hamard, P. & Frisson, T. & Ryckewaert, M. & Christophe, A., 2017. "Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops," Applied Energy, Elsevier, vol. 206(C), pages 1495-1507.
  59. Agir, Seven & Derin-Gure, Pinar & Senturk, Bilge, 2023. "Farmers’ perspectives on challenges and opportunities of agrivoltaics in Turkiye: An institutional perspective," Renewable Energy, Elsevier, vol. 212(C), pages 35-49.
  60. Sojib Ahmed, M. & Rezwan Khan, M. & Haque, Anisul & Ryyan Khan, M., 2022. "Agrivoltaics analysis in a techno-economic framework: Understanding why agrivoltaics on rice will always be profitable," Applied Energy, Elsevier, vol. 323(C).
  61. Trommsdorff, Max & Kang, Jinsuk & Reise, Christian & Schindele, Stephan & Bopp, Georg & Ehmann, Andrea & Weselek, Axel & Högy, Petra & Obergfell, Tabea, 2021. "Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
  62. Ya'acob, M.E. & Lu, Li & Zulkifli, S.A. & Roslan, N. & Ahmad, W.F.H. Wan, 2023. "Agrivoltaic approach in improving soil resistivity in large scale solar farms for energy sustainability," Applied Energy, Elsevier, vol. 352(C).
  63. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.
  64. Carlos Toledo & Alessandra Scognamiglio, 2021. "Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)," Sustainability, MDPI, vol. 13(12), pages 1-38, June.
  65. Ochuko Kelvin Overen & Edson Leroy Meyer, 2022. "Solar Energy Resources and Photovoltaic Power Potential of an Underutilised Region: A Case of Alice, South Africa," Energies, MDPI, vol. 15(13), pages 1-29, June.
  66. Sirnik, I. & Sluijsmans, J. & Oudes, D. & Stremke, S., 2023. "Circularity and landscape experience of agrivoltaics: A systematic review of literature and built systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
  67. Chung-Feng Jeffrey Kuo & Te-Li Su & Chao-Yang Huang & Han-Chang Liu & Jagadish Barman & Indira Kar, 2023. "Design and Development of a Symbiotic Agrivoltaic System for the Coexistence of Sustainable Solar Electricity Generation and Agriculture," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
  68. Simona Moretti & Alvaro Marucci, 2019. "A Photovoltaic Greenhouse with Variable Shading for the Optimization of Agricultural and Energy Production," Energies, MDPI, vol. 12(13), pages 1-15, July.
  69. Kyu-Won Hwang & Chul-Yong Lee, 2024. "Estimating the Deterministic and Stochastic Levelized Cost of the Energy of Fence-Type Agrivoltaics," Energies, MDPI, vol. 17(8), pages 1-19, April.
  70. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
  71. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.