IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v29y2004i7p1023-1042.html
   My bibliography  Save this item

Life cycle energy and environmental benefits of generating electricity from willow biomass

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
  2. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
  3. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
  4. Beagle, E. & Belmont, E., 2019. "Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States," Energy Policy, Elsevier, vol. 128(C), pages 267-275.
  5. Sahu, Pradeep & V, Prabu, 2021. "Techno-economic analysis of co-combustion of Indian coals with municipal solid waste in subcritical and supercritical based steam turbine power generating carbon-negative systems," Energy, Elsevier, vol. 233(C).
  6. Wang, Changbo & Chang, Yuan & Zhang, Lixiao & Chen, Yongsheng & Pang, Mingyue, 2018. "Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters," Energy, Elsevier, vol. 158(C), pages 121-127.
  7. Ericsson, Niclas & Nordberg, Åke & Sundberg, Cecilia & Ahlgren, Serina & Hansson, Per-Anders, 2014. "Climate impact and energy efficiency from electricity generation through anaerobic digestion or direct combustion of short rotation coppice willow," Applied Energy, Elsevier, vol. 132(C), pages 86-98.
  8. Xinhua Shen & Raghava R. Kommalapati & Ziaul Huque, 2015. "The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
  9. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
  10. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
  11. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
  12. Thakkar, Jignesh & Kumar, Amit & Ghatora, Sonia & Canter, Christina, 2016. "Energy balance and greenhouse gas emissions from the production and sequestration of charcoal from agricultural residues," Renewable Energy, Elsevier, vol. 94(C), pages 558-567.
  13. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2015. "Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix," Energy Policy, Elsevier, vol. 84(C), pages 155-165.
  14. Restrepo, Álvaro & Bazzo, Edson, 2016. "Co-firing: An exergoenvironmental analysis applied to power plants modified for burning coal and rice straw," Renewable Energy, Elsevier, vol. 91(C), pages 107-119.
  15. Shahjadi Hisan Farjana & Olubukola Tokede & Mahmud Ashraf, 2023. "Environmental Impact Assessment of Waste Wood-to-Energy Recovery in Australia," Energies, MDPI, vol. 16(10), pages 1-22, May.
  16. Roni, Md.S. & Eksioglu, Sandra D. & Searcy, Erin & Jha, Krishna, 2014. "A supply chain network design model for biomass co-firing in coal-fired power plants," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 115-134.
  17. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
  18. Chatzimouratidis, Athanasios I. & Pilavachi, Petros A., 2008. "Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process," Energy Policy, Elsevier, vol. 36(3), pages 1074-1089, March.
  19. Akbulut, Abdullah, 2012. "Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study," Energy, Elsevier, vol. 44(1), pages 381-390.
  20. Gallagher, Cathal & Murphy, Jerry D., 2013. "What is the realistic potential for biomethane produced through gasification of indigenous Willow or imported wood chip to meet renewable energy heat targets?," Applied Energy, Elsevier, vol. 108(C), pages 158-167.
  21. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
  22. Bonfiglio, Andrea & Esposti, Roberto, 2016. "Analysing the economy-wide impact of the supply chains activated by a new biomass power plant. The case of cardoon in Sardinia," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 5(1), pages 1-22, April.
  23. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
  24. Vargas-Moreno, J.M. & Callejón-Ferre, A.J. & Pérez-Alonso, J. & Velázquez-Martí, B., 2012. "A review of the mathematical models for predicting the heating value of biomass materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3065-3083.
  25. Buchholz, Thomas S. & Volk, Timothy A. & Luzadis, Valerie A., 2007. "A participatory systems approach to modeling social, economic, and ecological components of bioenergy," Energy Policy, Elsevier, vol. 35(12), pages 6084-6094, December.
  26. Ferrarini, Andrea & Serra, Paolo & Almagro, María & Trevisan, Marco & Amaducci, Stefano, 2017. "Multiple ecosystem services provision and biomass logistics management in bioenergy buffers: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 277-290.
  27. Huiru Zhao & Sen Guo, 2015. "External Benefit Evaluation of Renewable Energy Power in China for Sustainability," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
  28. Jean Nepomuscene Ntihuga & Thomas Senn & Peter Gschwind & Reinhard Kohlus, 2013. "Estimating Energy- and Eco-Balances for Continuous Bio-Ethanol Production Using a Blenke Cascade System," Energies, MDPI, vol. 6(4), pages 1-19, April.
  29. Kabakian, V. & McManus, M.C. & Harajli, H., 2015. "Attributional life cycle assessment of mounted 1.8kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system," Applied Energy, Elsevier, vol. 154(C), pages 428-437.
  30. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
  31. Huang, Ching-Hsun & Bagdon, Benjamin A., 2018. "Quantifying environmental and health benefits of using woody biomass for electricity generation in the Southwestern United States," Journal of Forest Economics, Elsevier, vol. 32(C), pages 123-134.
  32. Yang, Qing & Han, Fei & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2016. "Greenhouse gas emissions of a biomass-based pyrolysis plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1580-1590.
  33. Joselin Herbert, G.M. & Unni Krishnan, A., 2016. "Quantifying environmental performance of biomass energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 292-308.
  34. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
  35. Lingling Wang & Tsunemi Watanabe & Zhiwei Xu, 2015. "Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China," Energies, MDPI, vol. 8(2), pages 1-28, February.
  36. Sahu, S.G. & Chakraborty, N. & Sarkar, P., 2014. "Coal–biomass co-combustion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 575-586.
  37. Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
  38. Nian, Victor, 2016. "The carbon neutrality of electricity generation from woody biomass and coal, a critical comparative evaluation," Applied Energy, Elsevier, vol. 179(C), pages 1069-1080.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.