IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v37y2012i1p69-78.html
   My bibliography  Save this item

Assessing the environmental performance and sustainability of bioenergy production in Sweden: A life cycle assessment perspective

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
  2. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
  3. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
  4. Nikodinoska, Natasha & Buonocore, Elvira & Paletto, Alessandro & Franzese, Pier Paolo, 2017. "Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework," Applied Energy, Elsevier, vol. 186(P2), pages 197-210.
  5. Murphy, Fionnuala & Sosa, Amanda & McDonnell, Kevin & Devlin, Ger, 2016. "Life cycle assessment of biomass-to-energy systems in Ireland modelled with biomass supply chain optimisation based on greenhouse gas emission reduction," Energy, Elsevier, vol. 109(C), pages 1040-1055.
  6. Buonocore, Elvira & Häyhä, Tiina & Paletto, Alessandro & Franzese, Pier Paolo, 2014. "Assessing environmental costs and impacts of forestry activities: A multi-method approach to environmental accounting," Ecological Modelling, Elsevier, vol. 271(C), pages 10-20.
  7. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
  8. Nordborg, Maria & Berndes, Göran & Dimitriou, Ioannis & Henriksson, Annika & Mola-Yudego, Blas & Rosenqvist, Håkan, 2018. "Energy analysis of willow production for bioenergy in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 473-482.
  9. Liu, Tiansen & Song, Yazhi & Xing, Xinpeng & Zhu, Yue & Qu, Zhengyu, 2021. "Bridging production factors allocation and environmental performance of China’s heavy-polluting energy firms: The moderation effect of financing and internationalization," Energy, Elsevier, vol. 222(C).
  10. Blanco, Victor & Holzhauer, Sascha & Brown, Calum & Lagergren, Fredrik & Vulturius, Gregor & Lindeskog, Mats & Rounsevell, Mark D.A., 2017. "The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden," Ecosystem Services, Elsevier, vol. 23(C), pages 174-208.
  11. Häyhä, Tiina & Franzese, Pier Paolo & Paletto, Alessandro & Fath, Brian D., 2015. "Assessing, valuing, and mapping ecosystem services in Alpine forests," Ecosystem Services, Elsevier, vol. 14(C), pages 12-23.
  12. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
  13. Huang, Bao-Cheng & Li, Wen-Wei & Wang, Xu & Lu, Yan & Yu, Han-Qing, 2019. "Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 132-142.
  14. Alagoz, B.B. & Kaygusuz, A. & Karabiber, A., 2012. "A user-mode distributed energy management architecture for smart grid applications," Energy, Elsevier, vol. 44(1), pages 167-177.
  15. Daniel Bergquist & Daniela Garcia-Caro & Sofie Joosse & Madeleine Granvik & Felix Peniche, 2020. "The Sustainability of Living in a “Green” Urban District: An Emergy Perspective," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
  16. Oliveira, M. & Zucaro, A. & Santagata, R. & Ulgiati, S., 2022. "Environmental assessment of milk production from local to regional scales," Ecological Modelling, Elsevier, vol. 463(C).
  17. Collotta, M. & Champagne, P. & Tomasoni, G. & Alberti, M. & Busi, L. & Mabee, W., 2019. "Critical indicators of sustainability for biofuels: An analysis through a life cycle sustainabilty assessment perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  18. Franzese, Pier Paolo & Buonocore, Elvira & Donnarumma, Luigia & Russo, Giovanni F., 2017. "Natural capital accounting in marine protected areas: The case of the Islands of Ventotene and S. Stefano (Central Italy)," Ecological Modelling, Elsevier, vol. 360(C), pages 290-299.
  19. Livingstone, David & Smyth, Beatrice M. & Lyons, Gary & Foley, Aoife M. & Murray, Simon T. & Johnston, Chris, 2022. "Life cycle assessment of a short-rotation coppice willow riparian buffer strip for farm nutrient mitigation and renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  20. Ortas, Eduardo & Moneva, José M., 2013. "The Clean Techs equity indexes at stake: Risk and return dynamics analysis," Energy, Elsevier, vol. 57(C), pages 259-269.
  21. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
  22. Kamp, Andreas & Østergård, Hanne, 2013. "How to manage co-product inputs in emergy accounting exemplified by willow production for bioenergy," Ecological Modelling, Elsevier, vol. 253(C), pages 70-78.
  23. Heinsoo, Katrin & Tali, Kadri, 2019. "Can various bioenergy technologies add value to each other?," Energy, Elsevier, vol. 175(C), pages 259-264.
  24. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
  25. Wang, Lijun & Agyemang, Samuel A. & Amini, Hossein & Shahbazi, Abolghasem, 2015. "Mathematical modeling of production and biorefinery of energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 530-544.
  26. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 79-93.
  27. Sheng Yang & Timothy A. Volk & Marie-Odile P. Fortier, 2020. "Willow Biomass Crops Are a Carbon Negative or Low-Carbon Feedstock Depending on Prior Land Use and Transportation Distances to End Users," Energies, MDPI, vol. 13(16), pages 1-26, August.
  28. Royo, Javier & Sebastián, Fernando & García-Galindo, Daniel & Gómez, Maider & Díaz, Maryori, 2012. "Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case," Energy, Elsevier, vol. 48(1), pages 255-267.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.