IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v34y2009i8p1024-1031.html
   My bibliography  Save this item

CO2 emissions structure of Indian economy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Manisha Jain, 2021. "India's progress in meeting its climate goals: A comparative analysis using country-reported and external data," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2021-007, Indira Gandhi Institute of Development Research, Mumbai, India.
  2. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
  3. Lilia Endriana & Djoni Hartono & Tony Irawan, 2016. "Green economy priority sectors in Indonesia: a SAM approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 115-135, January.
  4. Rao, Narasimha D., 2013. "Distributional impacts of climate change mitigation in Indian electricity: The influence of governance," Energy Policy, Elsevier, vol. 61(C), pages 1344-1356.
  5. Kanitkar, Tejal & Banerjee, Rangan & Jayaraman, T., 2019. "An integrated modeling framework for energy economy and emissions modeling: A case for India," Energy, Elsevier, vol. 167(C), pages 670-679.
  6. Vajjarapu, Harsha & Verma, Ashish, 2022. "Understanding the mitigation potential of sustainable urban transport measures across income and gender groups," Journal of Transport Geography, Elsevier, vol. 102(C).
  7. Mark Sommer & Kurt Kratena, 2016. "The Carbon Footprint of European Households and Income Distribution. WWWforEurope Working Paper No. 113," WIFO Studies, WIFO, number 58787.
  8. Sun, Chuanwang & Ding, Dan & Yang, Mian, 2017. "Estimating the complete CO2 emissions and the carbon intensity in India: From the carbon transfer perspective," Energy Policy, Elsevier, vol. 109(C), pages 418-427.
  9. Mu, Tao & Xia, Qing & Kang, Chongqing, 2010. "Input-output table of electricity demand and its application," Energy, Elsevier, vol. 35(1), pages 326-331.
  10. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
  11. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
  12. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
  13. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
  14. Zhen, Wei & Zhong, Zhangqi & Wang, Yichen & Miao, Lu & Qin, Quande & Wei, Yi-Ming, 2019. "Evolution of urban household indirect carbon emission responsibility from an inter-sectoral perspective: A case study of Guangdong, China," Energy Economics, Elsevier, vol. 83(C), pages 197-207.
  15. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
  16. Zhang, Moyi & Huang, Xian-Jin, 2012. "Effects of industrial restructuring on carbon reduction: An analysis of Jiangsu Province, China," Energy, Elsevier, vol. 44(1), pages 515-526.
  17. Lilis Yuaningsih & R. Adjeng Mariana Febrianti, 2021. "Spotting the Environmental Effect of the Economy and Technology: How the Development is Causing A Stringency with Carbon Emission?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 130-137.
  18. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
  19. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
  20. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
  21. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Assessment of nuclear energy embodied in international trade following a world multi-regional input–output approach," Energy, Elsevier, vol. 91(C), pages 91-101.
  22. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
  23. Tarancón, Miguel Ángel & del Río, Pablo & Callejas, Fernando, 2011. "Determining the responsibility of manufacturing sectors regarding electricity consumption. The Spanish case," Energy, Elsevier, vol. 36(1), pages 46-52.
  24. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
  25. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
  26. Wang, Zhenyu & Meng, Jing & Zheng, Heran & Shao, Shuai & Wang, Daoping & Mi, Zhifu & Guan, Dabo, 2018. "Temporal change in India’s imbalance of carbon emissions embodied in international trade," Applied Energy, Elsevier, vol. 231(C), pages 914-925.
  27. Suvajit Banerjee, 2020. "Carbon Emissions Embodied in India–United Kingdom Trade: A Case Study on North–South Debate," Foreign Trade Review, , vol. 55(2), pages 199-215, May.
  28. Mahesh, A. & Shoba Jasmin, K.S., 2013. "Role of renewable energy investment in India: An alternative to CO2 mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 414-424.
  29. Patzek, Tadeusz W. & Croft, Gregory D., 2010. "A global coal production forecast with multi-Hubbert cycle analysis," Energy, Elsevier, vol. 35(8), pages 3109-3122.
  30. N. Thangaiyarkarasi & S. Vanitha, 2021. "The Impact of Financial Development on Decarbonization Factors of Carbon Emissions: A Global Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 353-364.
  31. Alcántara, Vicent & del Río, Pablo & Hernández, Félix, 2010. "Structural analysis of electricity consumption by productive sectors. The Spanish case," Energy, Elsevier, vol. 35(5), pages 2088-2098.
  32. Prasad, Mousami & Mishra, Trupti, 2017. "Low-carbon growth for Indian iron and steel sector: exploring the role of voluntary environmental compliance," Energy Policy, Elsevier, vol. 100(C), pages 41-50.
  33. Huang, Rui & Tian, Lixin, 2021. "CO2 emissions inequality through the lens of developing countries," Applied Energy, Elsevier, vol. 281(C).
  34. Duarte, Rosa & Langarita, Raquel & Sánchez-Chóliz, Julio, 2017. "The electricity industry in Spain: A structural analysis using a disaggregated input-output model," Energy, Elsevier, vol. 141(C), pages 2640-2651.
  35. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
  36. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.