IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v49y2012icp688-694.html
   My bibliography  Save this item

Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sorgato, M.J. & Schneider, K. & Rüther, R., 2018. "Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate," Renewable Energy, Elsevier, vol. 118(C), pages 84-98.
  2. Vahl, Fabrício Peter & Rüther, Ricardo & Casarotto Filho, Nelson, 2013. "The influence of distributed generation penetration levels on energy markets," Energy Policy, Elsevier, vol. 62(C), pages 226-235.
  3. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
  4. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Lee, Minhyun, 2017. "An economic impact analysis of residential progressive electricity tariffs in implementing the building-integrated photovoltaic blind using an advanced finite element model," Applied Energy, Elsevier, vol. 202(C), pages 259-274.
  5. Nicholls, A. & Sharma, R. & Saha, T.K., 2015. "Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia," Applied Energy, Elsevier, vol. 159(C), pages 252-264.
  6. Ranganai Chidembo & Joseph Francis & Simbarashe Kativhu, 2022. "Rural Households’ Perceptions of the Adoption of Rooftop Solar Photovoltaics in Vhembe District, South Africa," Energies, MDPI, vol. 15(17), pages 1-11, August.
  7. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
  8. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
  9. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
  10. Yunna Wu & Jianli Zhou & Yong Hu & Lingwenying Li & Xiaokun Sun, 2018. "A TODIM-Based Investment Decision Framework for Commercial Distributed PV Projects under the Energy Performance Contracting (EPC) Business Model: A Case in East-Central China," Energies, MDPI, vol. 11(5), pages 1-27, May.
  11. Shahsavar, Amin & Khanmohammadi, Shoaib & Khaki, Mahsa & Salmanzadeh, Mazyar, 2018. "Performance assessment of an innovative exhaust air energy recovery system based on the PV/T-assisted thermal wheel," Energy, Elsevier, vol. 162(C), pages 682-696.
  12. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
  13. José de Castro Vieira, Samuel & Tapia Carpio, Lucio Guido, 2020. "The economic impact on residential fees associated with the expansion of grid-connected solar photovoltaic generators in Brazil," Renewable Energy, Elsevier, vol. 159(C), pages 1084-1098.
  14. Vilaça Gomes, P. & Knak Neto, N. & Carvalho, L. & Sumaili, J. & Saraiva, J.T. & Dias, B.H. & Miranda, V. & Souza, S.M., 2018. "Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues," Energy Policy, Elsevier, vol. 115(C), pages 199-206.
  15. Holdermann, Claudius & Kissel, Johannes & Beigel, Jürgen, 2014. "Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors," Energy Policy, Elsevier, vol. 67(C), pages 612-617.
  16. Hancevic, Pedro I. & Nuñez, Hector M. & Rosellon, Juan, 2017. "Distributed photovoltaic power generation: Possibilities, benefits, and challenges for a widespread application in the Mexican residential sector," Energy Policy, Elsevier, vol. 110(C), pages 478-489.
  17. de Faria, Haroldo & Trigoso, Federico B.M. & Cavalcanti, João A.M., 2017. "Review of distributed generation with photovoltaic grid connected systems in Brazil: Challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 469-475.
  18. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
  19. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
  20. Liu, Diyi & Qi, Suntong & Xu, Tiantong, 2023. "In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?," Energy Policy, Elsevier, vol. 174(C).
  21. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
  22. Timilsina,Govinda R., 2021. "Economics of Distributed Photovoltaics : An Illustration from Bangladesh," Policy Research Working Paper Series 9699, The World Bank.
  23. Mayr, Dieter & Schmid, Erwin & Trollip, Hilton & Zeyringer, Marianne & Schmidt, Johannes, 2015. "The impact of residential photovoltaic power on electricity sales revenues in Cape Town, South Africa," Utilities Policy, Elsevier, vol. 36(C), pages 10-23.
  24. Wichsinee Wibulpolprasert & Umnouy Ponsukcharoen & Siripha Junlakarn & Sopitsuda Tongsopit, 2021. "Preliminarily Screening Geographical Hotspots for New Rooftop PV Installation: A Case Study in Thailand," Energies, MDPI, vol. 14(11), pages 1-30, June.
  25. Biondi, Tommaso & Moretto, Michele, 2015. "Solar Grid Parity dynamics in Italy: A real option approach," Energy, Elsevier, vol. 80(C), pages 293-302.
  26. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
  27. Zbigniew Brodziński & Katarzyna Brodzińska & Mikołaj Szadziun, 2021. "Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland," Energies, MDPI, vol. 14(8), pages 1-17, April.
  28. Armin Razmjoo & Mostafa Rezaei & Seyedali Mirjalili & Meysam Majidi Nezhad & Giuseppe Piras, 2021. "Development of Sustainable Energy Use with Attention to Fruitful Policy," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
  29. Liao, Chuan & Fei, Ding, 2019. "Poverty reduction through photovoltaic-based development intervention in China: Potentials and constraints," World Development, Elsevier, vol. 122(C), pages 1-10.
  30. Zhao, Xingang & Zeng, Yiping & Zhao, Di, 2015. "Distributed solar photovoltaics in China: Policies and economic performance," Energy, Elsevier, vol. 88(C), pages 572-583.
  31. Chen, Zhisong & Su, Shong-Iee Ivan, 2014. "Photovoltaic supply chain coordination with strategic consumers in China," Renewable Energy, Elsevier, vol. 68(C), pages 236-244.
  32. Garcez, Catherine Aliana Gucciardi, 2017. "What do we know about the study of distributed generation policies and regulations in the Americas? A systematic review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1404-1416.
  33. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
  34. Ahmed Elkhatat & Shaheen A. Al-Muhtaseb, 2023. "Combined “Renewable Energy–Thermal Energy Storage (RE–TES)” Systems: A Review," Energies, MDPI, vol. 16(11), pages 1-46, June.
  35. Xin-gang, Zhao & Zhen, Wang, 2019. "Technology, cost, economic performance of distributed photovoltaic industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 53-64.
  36. Mercedes Garcia, Angel V. & Sánchez-Romero, Francisco Javier & López-Jiménez, P. Amparo & Pérez-Sánchez, Modesto, 2022. "A new optimization approach for the use of hybrid renewable systems in the search of the zero net energy consumption in water irrigation systems," Renewable Energy, Elsevier, vol. 195(C), pages 853-871.
  37. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.