IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v115y2018icp199-206.html
   My bibliography  Save this article

Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues

Author

Listed:
  • Vilaça Gomes, P.
  • Knak Neto, N.
  • Carvalho, L.
  • Sumaili, J.
  • Saraiva, J.T.
  • Dias, B.H.
  • Miranda, V.
  • Souza, S.M.

Abstract

The increasing integration of distributed renewable energy sources, such as photovoltaic (PV) systems, requires adequate regulatory schemes in order to reach economic sustainability. Incentives such as Feed-in Tariffs and Net Metering are seen as key policies to achieve this objective. While the Feed-in Tariff scheme has been widely applied in the past, it has now become less justified mainly due to the sharp decline of the PV system costs. Consequently, the Net Metering scheme is being adopted in several countries, such as Brazil, where it has is in force since 2012. In this context, this paper aims to estimate the minimum monthly residential demand for prosumers located in the different distribution concession areas in the interconnected Brazilian system that ensures the economic viability of the installation of PV systems. In addition, the potential penetration of PV-based distributed generation (DG) in residential buildings is also estimated. This study was conducted for the entire Brazilian interconnected system and it demonstrates that the integration of distributed PV systems is technical-economic feasible in several regions of the country reinforcing the role of the distributed solar energy in the diversification of Brazilian electricity matrix.

Suggested Citation

  • Vilaça Gomes, P. & Knak Neto, N. & Carvalho, L. & Sumaili, J. & Saraiva, J.T. & Dias, B.H. & Miranda, V. & Souza, S.M., 2018. "Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues," Energy Policy, Elsevier, vol. 115(C), pages 199-206.
  • Handle: RePEc:eee:enepol:v:115:y:2018:i:c:p:199-206
    DOI: 10.1016/j.enpol.2018.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518300156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghisi, Enedir & Gosch, Samuel & Lamberts, Roberto, 2007. "Electricity end-uses in the residential sector of Brazil," Energy Policy, Elsevier, vol. 35(8), pages 4107-4120, August.
    2. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
    3. Lacchini, Corrado & Dos Santos, João Carlos V., 2013. "Photovoltaic energy generation in Brazil – Cost analysis using coal-fired power plants as comparison," Renewable Energy, Elsevier, vol. 52(C), pages 183-189.
    4. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    5. Camilo, Henrique Fernandes & Udaeta, Miguel Edgar Morales & Veiga Gimenes, André Luiz & Grimoni, Jose Aquiles Baesso, 2017. "Assessment of photovoltaic distributed generation – Issues of grid connected systems through the consumer side applied to a case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 712-719.
    6. Holdermann, Claudius & Kissel, Johannes & Beigel, Jürgen, 2014. "Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors," Energy Policy, Elsevier, vol. 67(C), pages 612-617.
    7. del Río, Pablo & Mir-Artigues, Pere, 2012. "Support for solar PV deployment in Spain: Some policy lessons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5557-5566.
    8. Pereira, Marcio Giannini & Camacho, Cristiane Farias & Freitas, Marcos Aurélio Vasconcelos & Silva, Neilton Fidelis da, 2012. "The renewable energy market in Brazil: Current status and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3786-3802.
    9. Silveira, Jose Luz & Tuna, Celso Eduardo & Lamas, Wendell de Queiroz, 2013. "The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 133-141.
    10. de Faria, Haroldo & Trigoso, Federico B.M. & Cavalcanti, João A.M., 2017. "Review of distributed generation with photovoltaic grid connected systems in Brazil: Challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 469-475.
    11. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    12. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    13. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    2. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Marcus Vinícius Coelho Vieira da Costa & Osmar Luiz Ferreira de Carvalho & Alex Gois Orlandi & Issao Hirata & Anesmar Olino de Albuquerque & Felipe Vilarinho e Silva & Renato Fontes Guimarães & Robert, 2021. "Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation," Energies, MDPI, vol. 14(10), pages 1-15, May.
    4. Freitas, Jader de Sousa & Cronemberger, Joára & Soares, Raí Mariano & Amorim, Cláudia Naves David, 2020. "Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug," Renewable Energy, Elsevier, vol. 160(C), pages 1468-1479.
    5. Pillot, Benjamin & de Siqueira, Sandro & Dias, João Batista, 2018. "Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case," Renewable Energy, Elsevier, vol. 127(C), pages 974-988.
    6. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    7. Timilsina,Govinda R., 2021. "Economics of Distributed Photovoltaics : An Illustration from Bangladesh," Policy Research Working Paper Series 9699, The World Bank.
    8. Stecanella, Priscilla A. Juá & Camargos, Ronaldo S.C. & Vieira, Daniel & Domingues, Elder G. & Ferreira Filho, Anésio de L., 2022. "A methodology for determining the incentive policy for photovoltaic distributed generation that leverages its technical benefits in the distribution system," Renewable Energy, Elsevier, vol. 199(C), pages 474-485.
    9. de Oliveira Pinto Coelho, Eden & Aquila, Giancarlo & Bonatto, Benedito Donizeti & Balestrassi, Pedro Paulo & de Oliveira Pamplona, Edson & Nakamura, Wilson Toshiro, 2021. "Regulatory impact of photovoltaic prosumer policies in Brazil based on a financial risk analysis," Utilities Policy, Elsevier, vol. 70(C).
    10. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    11. Samper, M. & Coria, G. & Facchini, M., 2021. "Grid parity analysis of distributed PV generation considering tariff policies in Argentina," Energy Policy, Elsevier, vol. 157(C).
    12. Sabina Scarpellini & José Ángel Gimeno & Pilar Portillo-Tarragona & Eva Llera-Sastresa, 2021. "Financial Resources for the Investments in Renewable Self-Consumption in a Circular Economy Framework," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    13. Penizzotto, F. & Pringles, R. & Olsina, F., 2019. "Real options valuation of photovoltaic power investments in existing buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Cheng, Cheng & Dong, Kangyin & Wang, Zhen & Liu, Shulin & Jurasz, Jakub & Zhang, Haoran, 2023. "Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective," Applied Energy, Elsevier, vol. 336(C).
    15. Fernando M. Camilo & Paulo Santos, 2023. "Technical-Economic Evaluation of Residential Wind and Photovoltaic Systems with Self-Consumption and Storage Systems in Portugal," Energies, MDPI, vol. 16(4), pages 1-21, February.
    16. Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
    17. Carstens, Danielle Denes dos Santos & Cunha, Sieglinde Kindl da, 2019. "Challenges and opportunities for the growth of solar photovoltaic energy in Brazil," Energy Policy, Elsevier, vol. 125(C), pages 396-404.
    18. Xin-gang, Zhao & Yi-min, Xie, 2019. "The economic performance of industrial and commercial rooftop photovoltaic in China," Energy, Elsevier, vol. 187(C).
    19. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    20. de Jesus, Ábio Xavier Cardoso & Pinheiro Neto, Daywes & Domingues, Elder Geraldo, 2023. "Computational tool for technical-economic analysis of photovoltaic microgeneration in Brazil," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    2. Garlet, Taís Bisognin & Ribeiro, José Luis Duarte & de Souza Savian, Fernando & Mairesse Siluk, Julio Cezar, 2019. "Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 157-169.
    3. Carstens, Danielle Denes dos Santos & Cunha, Sieglinde Kindl da, 2019. "Challenges and opportunities for the growth of solar photovoltaic energy in Brazil," Energy Policy, Elsevier, vol. 125(C), pages 396-404.
    4. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    5. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    7. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    8. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working papers of CATT hal-02976874, HAL.
    9. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
    10. Pillot, Benjamin & de Siqueira, Sandro & Dias, João Batista, 2018. "Grid parity analysis of distributed PV generation using Monte Carlo approach: The Brazilian case," Renewable Energy, Elsevier, vol. 127(C), pages 974-988.
    11. Bruno Moreno Rodrigo de Freitas, 2020. "Quantifying the effect of regulated volumetric electriciy tariffs on residential PV adoption under net metering scheme," Working Papers hal-02976874, HAL.
    12. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    13. Dias, César Luiz de Azevedo & Castelo Branco, David Alves & Arouca, Maurício Cardoso & Loureiro Legey, Luiz Fernando, 2017. "Performance estimation of photovoltaic technologies in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 367-375.
    14. de Oliveira Pinto Coelho, Eden & Aquila, Giancarlo & Bonatto, Benedito Donizeti & Balestrassi, Pedro Paulo & de Oliveira Pamplona, Edson & Nakamura, Wilson Toshiro, 2021. "Regulatory impact of photovoltaic prosumer policies in Brazil based on a financial risk analysis," Utilities Policy, Elsevier, vol. 70(C).
    15. La Monaca, Sarah & Ryan, Lisa, 2017. "Solar PV where the sun doesn’t shine: Estimating the economic impacts of support schemes for residential PV with detailed net demand profiling," Energy Policy, Elsevier, vol. 108(C), pages 731-741.
    16. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    17. Zhao, Xingang & Zeng, Yiping & Zhao, Di, 2015. "Distributed solar photovoltaics in China: Policies and economic performance," Energy, Elsevier, vol. 88(C), pages 572-583.
    18. Sorgato, M.J. & Schneider, K. & Rüther, R., 2018. "Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate," Renewable Energy, Elsevier, vol. 118(C), pages 84-98.
    19. Timilsina,Govinda R., 2021. "Economics of Distributed Photovoltaics : An Illustration from Bangladesh," Policy Research Working Paper Series 9699, The World Bank.
    20. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:115:y:2018:i:c:p:199-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.