IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v167y2021icp359-368.html
   My bibliography  Save this article

Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE

Author

Listed:
  • Alhammami, Hasan
  • An, Heungjo

Abstract

Although centralized solar systems have developed rapidly, decentralized solar systems are still unattractive to householders in Abu Dhabi due to technical and economic circumstances. This paper addresses this issue through a real-world case study examining the energy potential and economic performance of a rooftop solar system in two residential areas of Abu Dhabi. Then, following an analysis of the energy subsidy structure of Abu Dhabi, a new policy idea is discussed to mitigate the barriers to rooftop solar propagation. For a typical residence, a rooftop photovoltaic system would cover 11–20% of the annual electricity demand, indicating that the current net metering policy would be unattractive or useless to residents. The levelized cost of electricity of the considered system is around 0.05 USD per kWh, which is economically infeasible at the subsidized tariff for UAE nationals. However, at the higher tariff for expatriate residents, its internal rate of return ranges from 9.2 to 12.0%, implying a good possibility of success. This study proposes a new policy for government-led promotion of distributed solar systems through the redistribution of a portion of energy subsidies. This policy would expedite the proliferation of rooftop solar energy and reduce the expenditure for the government subsidy.

Suggested Citation

  • Alhammami, Hasan & An, Heungjo, 2021. "Techno-economic analysis and policy implications for promoting residential rooftop solar photovoltaics in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 167(C), pages 359-368.
  • Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:359-368
    DOI: 10.1016/j.renene.2020.11.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120318413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.11.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gherboudj, Imen & Ghedira, Hosni, 2016. "Assessment of solar energy potential over the United Arab Emirates using remote sensing and weather forecast data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1210-1224.
    2. Islam, M.D. & Kubo, I. & Ohadi, M. & Alili, A.A., 2009. "Measurement of solar energy radiation in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 86(4), pages 511-515, April.
    3. Tantisattayakul, Thanapol & Kanchanapiya, Premrudee, 2017. "Financial measures for promoting residential rooftop photovoltaics under a feed-in tariff framework in Thailand," Energy Policy, Elsevier, vol. 109(C), pages 260-269.
    4. Glassmire, John & Komor, Paul & Lilienthal, Peter, 2012. "Electricity demand savings from distributed solar photovoltaics," Energy Policy, Elsevier, vol. 51(C), pages 323-331.
    5. Kurdgelashvili, Lado & Li, Junli & Shih, Cheng-Hao & Attia, Benjamin, 2016. "Estimating technical potential for rooftop photovoltaics in California, Arizona and New Jersey," Renewable Energy, Elsevier, vol. 95(C), pages 286-302.
    6. Harder, Elizabeth & Gibson, Jacqueline MacDonald, 2011. "The costs and benefits of large-scale solar photovoltaic power production in Abu Dhabi, United Arab Emirates," Renewable Energy, Elsevier, vol. 36(2), pages 789-796.
    7. Suomalainen, Kiti & Wang, Vincent & Sharp, Basil, 2017. "Rooftop solar potential based on LiDAR data: Bottom-up assessment at neighbourhood level," Renewable Energy, Elsevier, vol. 111(C), pages 463-475.
    8. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    9. Lang, Tillmann & Ammann, David & Girod, Bastien, 2016. "Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings," Renewable Energy, Elsevier, vol. 87(P1), pages 77-87.
    10. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    11. Burke, Kerry B., 2014. "The reliability of distributed solar in critical peak demand: A capital value assessment," Renewable Energy, Elsevier, vol. 68(C), pages 103-110.
    12. El Chaar, Lana & Lamont, Lisa A., 2010. "Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 35(7), pages 1596-1601.
    13. Coria, Gustavo & Penizzotto, Franco & Pringles, Rolando, 2019. "Economic analysis of photovoltaic projects: The Argentinian renewable generation policy for residential sectors," Renewable Energy, Elsevier, vol. 133(C), pages 1167-1177.
    14. Wee, Sherilyn, 2016. "The effect of residential solar photovoltaic systems on home value: A case study of Hawai‘i," Renewable Energy, Elsevier, vol. 91(C), pages 282-292.
    15. Orioli, Aldo & Di Gangi, Alessandra, 2014. "Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings," Applied Energy, Elsevier, vol. 113(C), pages 955-969.
    16. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    17. Tongsopit, Sopitsuda & Junlakarn, Siripha & Wibulpolprasert, Wichsinee & Chaianong, Aksornchan & Kokchang, Phimsupha & Hoang, Nghia Vu, 2019. "The economics of solar PV self-consumption in Thailand," Renewable Energy, Elsevier, vol. 138(C), pages 395-408.
    18. Vilaça Gomes, P. & Knak Neto, N. & Carvalho, L. & Sumaili, J. & Saraiva, J.T. & Dias, B.H. & Miranda, V. & Souza, S.M., 2018. "Technical-economic analysis for the integration of PV systems in Brazil considering policy and regulatory issues," Energy Policy, Elsevier, vol. 115(C), pages 199-206.
    19. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    20. Radhi, Hassan, 2011. "On the value of decentralised PV systems for the GCC residential sector," Energy Policy, Elsevier, vol. 39(4), pages 2020-2027, April.
    21. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    22. Miranda, Raul F.C. & Szklo, Alexandre & Schaeffer, Roberto, 2015. "Technical-economic potential of PV systems on Brazilian rooftops," Renewable Energy, Elsevier, vol. 75(C), pages 694-713.
    23. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    24. Jafarkazemi, Farzad & Saadabadi, S. Ali, 2013. "Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 56(C), pages 44-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    2. Grzegorz Lew & Beata Sadowska & Katarzyna Chudy-Laskowska & Grzegorz Zimon & Magdalena Wójcik-Jurkiewicz, 2021. "Influence of Photovoltaic Development on Decarbonization of Power Generation—Example of Poland," Energies, MDPI, vol. 14(22), pages 1-20, November.
    3. Jiehui Yuan & Wenli Yuan & Juan Yuan & Zhihong Liu & Jia Liao & Xunmin Ou, 2023. "Policy Recommendations for Distributed Solar PV Aiming for a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    4. Omar Alrawi & Islam Safak Bayram & Muammer Koc & Sami G. Al-Ghamdi, 2022. "Economic Viability of Rooftop Photovoltaic Systems and Energy Storage Systems in Qatar," Energies, MDPI, vol. 15(9), pages 1-21, April.
    5. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    6. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2021. "Macroeconomic Efficiency of Photovoltaic Energy Production in Polish Farms," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    2. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    3. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    4. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    5. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    6. Duman, A. Can & Güler, Önder, 2020. "Economic analysis of grid-connected residential rooftop PV systems in Turkey," Renewable Energy, Elsevier, vol. 148(C), pages 697-711.
    7. Beuse, Martin & Dirksmeier, Mathias & Steffen, Bjarne & Schmidt, Tobias S., 2020. "Profitability of commercial and industrial photovoltaics and battery projects in South-East-Asia," Applied Energy, Elsevier, vol. 271(C).
    8. Eslami, M. & Nahani, P., 2021. "How policies affect the cost-effectiveness of residential renewable energy in Iran: A techno-economic analysis for optimization," Utilities Policy, Elsevier, vol. 72(C).
    9. Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
    10. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
    11. Lang, Tillmann & Ammann, David & Girod, Bastien, 2016. "Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings," Renewable Energy, Elsevier, vol. 87(P1), pages 77-87.
    12. Lee, Minhyun & Hong, Taehoon & Jeong, Jaewook & Jeong, Kwangbok, 2018. "Development of a rooftop solar photovoltaic rating system considering the technical and economic suitability criteria at the building level," Energy, Elsevier, vol. 160(C), pages 213-224.
    13. Juaidi, Adel & Montoya, Francisco G. & Gázquez, Jose A. & Manzano-Agugliaro, Francisco, 2016. "An overview of energy balance compared to sustainable energy in United Arab Emirates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1195-1209.
    14. Lee, Minhyun & Hong, Taehoon & Jeong, Kwangbok & Kim, Jimin, 2018. "A bottom-up approach for estimating the economic potential of the rooftop solar photovoltaic system considering the spatial and temporal diversity," Applied Energy, Elsevier, vol. 232(C), pages 640-656.
    15. Samper, M. & Coria, G. & Facchini, M., 2021. "Grid parity analysis of distributed PV generation considering tariff policies in Argentina," Energy Policy, Elsevier, vol. 157(C).
    16. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    17. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    18. Mohamad Kharseh & Holger Wallbaum, 2018. "How Adding a Battery to a Grid-Connected Photovoltaic System Can Increase its Economic Performance: A Comparison of Different Scenarios," Energies, MDPI, vol. 12(1), pages 1-19, December.
    19. Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    20. Myeongchan Oh & Hyeong-Dong Park, 2019. "Optimization of Solar Panel Orientation Considering Temporal Volatility and Scenario-Based Photovoltaic Potential: A Case Study in Seoul National University," Energies, MDPI, vol. 12(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:167:y:2021:i:c:p:359-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.