IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v32y2010i6p1364-1373.html
   My bibliography  Save this item

Convergence of per capita carbon dioxide emissions in the EU: Legend or reality?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2014. "The causal factors of international inequality in co2 emissions per capita: a regression-based inequality decomposition analysis," Working Papers 2014/20, Institut d'Economia de Barcelona (IEB).
  2. Mar'ia Jos'e Presno & Manuel Landajo & Paula Fern'andez Gonz'alez, 2024. "Stochastic convergence in per capita CO$_2$ emissions. An approach from nonlinear stationarity analysis," Papers 2402.00567, arXiv.org.
  3. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
  4. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla, 2017. "The Causal Factors of International Inequality in $$\hbox {CO}_{2}$$ CO 2 Emissions Per Capita: A Regression-Based Inequality Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 683-700, August.
  5. Thomas Jobert & Fatih Karanfil & Anna Tykhonenko, 2012. "Trade and Environment: Further Empirical Evidence from Heterogeneous Panels Using Aggregate Data," GREDEG Working Papers 2012-15, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
  6. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
  7. Anna Tykhonenko & Donnat Grégory, 2022. "Debt Relief: The Day After, Financing Low-Income Countries," Post-Print hal-04298772, HAL.
  8. Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
  9. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
  10. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
  11. Duro, Juan Antonio, 2013. "International mobility in carbon dioxide emissions," Energy Policy, Elsevier, vol. 55(C), pages 208-216.
  12. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
  13. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
  14. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
  15. Duro Moreno, Juan Antonio & Teixidó Figueras, Jordi & Padilla, Emilio, 2013. "Empirics of the international inequality in CO2 emissions intensity: explanatory factors according to complementary decomposition methodologies," Working Papers 2072/220759, Universitat Rovira i Virgili, Department of Economics.
  16. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
  17. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
  18. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
  19. Lijie Gao & Xiaoqi Shang & Fengmei Yang & Longyu Shi, 2021. "A Dynamic Benchmark System for Per Capita Carbon Emissions in Low-Carbon Counties of China," Energies, MDPI, vol. 14(3), pages 1-16, January.
  20. Padilla, Emilio & Duro, Juan Antonio, 2013. "Explanatory factors of CO2 per capita emission inequality in the European Union," Energy Policy, Elsevier, vol. 62(C), pages 1320-1328.
  21. Shahbaz, Muhammad & Khraief, Naceur & Hammoudeh, Shawkat, 2019. "How Do Carbon Emissions Respond to Economic Shocks? Evidence from Low-, Middle- and High-Income Countries," MPRA Paper 93976, University Library of Munich, Germany, revised 15 May 2019.
  22. He, Weijun & Chen, Hao, 2022. "Will China's provincial per capita energy consumption converge to a common level over 1990–2017? Evidence from a club convergence approach," Energy, Elsevier, vol. 249(C).
  23. Astrida Miceikienė & Kristina Gesevičienė & Daiva Rimkuvienė, 2021. "Assessment of the Dependence of GHG Emissions on the Support and Taxes in the EU Countries," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
  24. Catherine Benjamin & Isabelle Cadoret & Marie-Hélène Hubert, 2015. "The European Climate Policy is Ambitious: Myth or Reality?," Revue d'économie politique, Dalloz, vol. 125(5), pages 731-753.
  25. Duro, Juan Antonio, 2015. "The international distribution of energy intensities: Some synthetic results," Energy Policy, Elsevier, vol. 83(C), pages 257-266.
  26. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
  27. Ernesto Aguayo-T鬬ez & Jos頍art󹑺-Navarro, 2013. "Internal and international migration in Mexico: 1995--2000," Applied Economics, Taylor & Francis Journals, vol. 45(13), pages 1647-1661, May.
  28. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
  29. Wang, Yiming & Zhang, Pei & Huang, Dake & Cai, Changda, 2014. "Convergence behavior of carbon dioxide emissions in China," Economic Modelling, Elsevier, vol. 43(C), pages 75-80.
  30. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
  31. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
  32. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
  33. Nilgun Yavuz & Veli Yilanci, 2013. "Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 283-291, February.
  34. Jianhuan Huang & Yue Hua, 2019. "Eco-efficiency Convergence and Green Urban Growth in China," International Regional Science Review, , vol. 42(3-4), pages 307-334, May.
  35. Jeffrey, Cynthia & Perkins, Jon D., 2015. "The association between energy taxation, participation in an emissions trading system, and the intensity of carbon dioxide emissions in the European Union," The International Journal of Accounting, Elsevier, vol. 50(4), pages 397-417.
  36. Lin, Boqiang & Zhu, Junpeng, 2021. "Impact of China's new-type urbanization on energy intensity: A city-level analysis," Energy Economics, Elsevier, vol. 99(C).
  37. Firat Emir & Mehmet Balcilar & Muhammad Shahbaz, 2018. "Inequality in Carbon Intensity in EU-28: Analysis Based on Club Convergence," Working Papers 15-38, Eastern Mediterranean University, Department of Economics.
  38. Rios, Vicente & Gianmoena, Lisa, 2018. "Convergence in CO2 emissions: A spatial economic analysis with cross-country interactions," Energy Economics, Elsevier, vol. 75(C), pages 222-238.
  39. Ghassen El-Montasser & Roula Inglesi-Lotz & Rangan Gupta, 2015. "Convergence of greenhouse gas emissions among G7 countries," Applied Economics, Taylor & Francis Journals, vol. 47(60), pages 6543-6552, December.
  40. Hao, Yu & Wei, Yi-Ming, 2015. "When does the turning point in China's CO2 emissions occur? Results based on the Green Solow model," Environment and Development Economics, Cambridge University Press, vol. 20(6), pages 723-745, December.
  41. Vishal Chandr Jaunky and Lin Zhang, 2016. "Convergence of Operational Efficiency in Chinas Provincial Power Sectors," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
  42. Guilló, María Dolores & Magalhaes, Manuela, 2018. "Long-run Sustainability in the Green Solow Model," QM&ET Working Papers 18-2, University of Alicante, D. Quantitative Methods and Economic Theory.
  43. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Mariam Camarero & Inmaculada Martínez-Zarzoso, 2017. "Stochastic and club convergence of sectoral CO2 emissions in the European Union," Working Papers 2017/01, Economics Department, Universitat Jaume I, Castellón (Spain).
  44. Cuihong Ye & Yiguo Chen & Roula Inglesi-Lotz & Tsangyao Chang, 2020. "CO2 emissions converge in China and G7 countries? Further evidence from Fourier quantile unit root test," Energy & Environment, , vol. 31(2), pages 348-363, March.
  45. Hocaoglu, Fatih Onur & Karanfil, Fatih, 2011. "Examining the link between carbon dioxide emissions and the share of industry in GDP: Modeling and testing for the G-7 countries," Energy Policy, Elsevier, vol. 39(6), pages 3612-3620, June.
  46. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
  47. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2022. "Do methane emissions converge? Evidence from global panel data on production- and consumption-based emissions," Empirical Economics, Springer, vol. 63(2), pages 877-900, August.
  48. González-Álvarez, María A. & Montañés, Antonio & Olmos, Lorena, 2020. "Towards a sustainable energy scenario? A worldwide analysis," Energy Economics, Elsevier, vol. 87(C).
  49. Camarero, Mariam & Picazo-Tadeo, Andrés J. & Tamarit, Cecilio, 2013. "Are the determinants of CO2 emissions converging among OECD countries?," Economics Letters, Elsevier, vol. 118(1), pages 159-162.
  50. Hao, Yu & Peng, Hui, 2017. "On the convergence in China's provincial per capita energy consumption: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 68(C), pages 31-43.
  51. Guilherme de Oliveira & Deise Bourscheidt, 2015. "Multi-Sectorial Convergence in Greenhouse Gas Emissions," Working Papers, Department of Economics 2015_34, University of São Paulo (FEA-USP).
  52. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
  53. Herrerias, M.J., 2012. "CO2 weighted convergence across the EU-25 countries (1920–2007)," Applied Energy, Elsevier, vol. 92(C), pages 9-16.
  54. Xiao, Lin & Guan, Yuru & Guo, Yaqin & Xue, Rui & Li, Jiashuo & Shan, Yuli, 2022. "Emission accounting and drivers in 2004 EU accession countries," Applied Energy, Elsevier, vol. 314(C).
  55. Marrero, Gustavo A., 2010. "Greenhouse gases emissions, growth and the energy mix in Europe," Energy Economics, Elsevier, vol. 32(6), pages 1356-1363, November.
  56. Paul Evans & Ji Uk Kim, 2016. "Convergence analysis as spatial dynamic panel regression and distribution dynamics of $$\hbox {CO}_{2}$$ CO 2 emissions in Asian countries," Empirical Economics, Springer, vol. 50(3), pages 729-751, May.
  57. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
  58. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2020. "Stochastic convergence in per capita CO2 emissions: Evidence from emerging economies, 1921–2014," Energy Economics, Elsevier, vol. 86(C).
  59. Davoud Behboudi & Davoud Hamidi Razi & Sadeq Rezaei, 2017. "Spatial Convergence Of Per Capita Co2 Emissions Among Mena Countries," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 11(1), pages 18-35, June.
  60. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
  61. Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
  62. Ryo Ishida & Mika Goto, 2024. "Integrated Efficiency of Japan’s 47 Prefectures Incorporating Sustainability Factors," Energies, MDPI, vol. 17(8), pages 1-21, April.
  63. Miller, Sebastián J. & Vela, Mauricio A., 2013. "Are Environmentally Related Taxes Effective?," IDB Publications (Working Papers) 4685, Inter-American Development Bank.
  64. UÄŸur UrsavaÅŸ & Veli Yilanci, 2023. "Convergence analysis of ecological footprint at different time scales: Evidence from Southern Common Market countries," Energy & Environment, , vol. 34(2), pages 429-442, March.
  65. Chaohui Zhang & Xin Dong & Ze Zhang, 2023. "Spatiotemporal Dynamic Distribution, Regional Differences and Spatial Convergence Mechanisms of Carbon Emission Intensity: Evidence from the Urban Agglomerations in the Yellow River Basin," IJERPH, MDPI, vol. 20(4), pages 1-28, February.
  66. Gina Ionela Butnaru & Alina-Petronela Haller & Raluca Irina Clipa & Mirela Ștefănică & Mihaela Ifrim, 2020. "The Nexus Between Convergence of Conventional and Renewable Energy Consumption in the Present European Union States. Explorative Study on Parametric and Semi-Parametric Methods," Energies, MDPI, vol. 13(20), pages 1-19, October.
  67. Horvath, Denis & Sulikova, Veronika & Gazda, Vladimir & Sinicakova, Marianna, 2013. "The distance-based approach to the quantification of the world convergences and imbalances - comparisons across countries and factors," MPRA Paper 45033, University Library of Munich, Germany.
  68. Shen, Neng & Peng, Hui & Wang, Qunwei, 2021. "Spatial dependence, agglomeration externalities and the convergence of carbon productivity," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
  69. Guilherme De Oliveira & Deise Bourscheidt, 2016. "Convergência Multissetorial Na Emissão De Gases Do Efeito Estufa," Anais do XLIII Encontro Nacional de Economia [Proceedings of the 43rd Brazilian Economics Meeting] 182, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
  70. Thomas Jobert & Fatih Karanfil & Anna Tykhonenko, 2014. "Estimating country-specific environmental Kuznets curves from panel data: a Bayesian shrinkage approach," Applied Economics, Taylor & Francis Journals, vol. 46(13), pages 1449-1464, May.
  71. Thomas Jobert & Fatih Karanfil & Anna Tykhonenko, 2012. "Environmental Kuznets Curve for carbon dioxide emissions: lack of robustness to heterogeneity?," Working Papers halshs-00721675, HAL.
  72. Guilherme de Oliveira & Giana de Vargas Mores, 2015. "Convergence in per capita Carbon Dioxide Emissions: a panel data approach," Working Papers, Department of Economics 2015_35, University of São Paulo (FEA-USP).
  73. Tsun Se Cheong & Yanrui Wu & Jianxin Wu, 2016. "Evolution of carbon dioxide emissions in Chinese cities: trends and transitional dynamics," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(3), pages 357-377, July.
  74. Liobikienė, Genovaitė & Butkus, Mindaugas & Bernatonienė, Jurga, 2016. "Drivers of greenhouse gas emissions in the Baltic states: decomposition analysis related to the implementation of Europe 2020 strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 309-317.
  75. Mariam Camarero & Juana Castillo-Giménez & Andrés Picazo-Tadeo & Cecilio Tamarit, 2014. "Is eco-efficiency in greenhouse gas emissions converging among European Union countries?," Empirical Economics, Springer, vol. 47(1), pages 143-168, August.
  76. Wang, Juan & Zhang, Kezhong, 2014. "Convergence of carbon dioxide emissions in different sectors in China," Energy, Elsevier, vol. 65(C), pages 605-611.
  77. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
  78. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
  79. Li, Xiao-Lin & Tang, D.P. & Chang, Tsangyao, 2014. "CO2 emissions converge in the 50 U.S. states — Sequential panel selection method," Economic Modelling, Elsevier, vol. 40(C), pages 320-333.
  80. Yongqing Nan & Qin Li & Jinxiang Yu & Haiya Cai & Qin Zhou, 2020. "Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5337-5369, August.
  81. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
  82. Li, Xuehui & Lin, Boqiang, 2013. "Global convergence in per capita CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 357-363.
  83. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
  84. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2018. "Conditional convergence in per capita carbon emissions since 1900," Applied Energy, Elsevier, vol. 228(C), pages 916-927.
  85. Juan Antonio Duro & Jordi Teixidó-Figueras & Emilio Padilla Rosa, 2014. "The causal factors of international inequality in CO2 emissions per capita: A regression-based inequality decomposition analysis," Working Papers wpdea1402, Department of Applied Economics at Universitat Autonoma of Barcelona.
  86. Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.