IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v29y2007i4p868-888.html
   My bibliography  Save this item

Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rout, Ullash K. & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi & Tomoda, Toshimasa, 2008. "Impact assessment of the increase in fossil fuel prices on the global energy system, with and without CO2 concentration stabilization," Energy Policy, Elsevier, vol. 36(9), pages 3477-3484, September.
  2. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa & Nagashima, Miyuki & Wada, Kenichi & Sano, Fuminori, 2012. "International comparisons of energy efficiency in power, steel, and cement industries," Energy Policy, Elsevier, vol. 44(C), pages 118-129.
  3. Greening, Lorna A. & Boyd, Gale & Roop, Joseph M., 2007. "Modeling of industrial energy consumption: An introduction and context," Energy Economics, Elsevier, vol. 29(4), pages 599-608, July.
  4. Clara Inés Pardo Martínez, 2010. "Investments and Energy Efficiency in Colombian Manufacturing Industries," Energy & Environment, , vol. 21(6), pages 545-562, October.
  5. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
  6. Arens, M. & Worrell, E., 2014. "Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption," Energy, Elsevier, vol. 73(C), pages 968-977.
  7. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa, 2013. "Long-term global availability of steel scrap," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 81-91.
  8. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
  9. Tongpool, Rungnapa & Jirajariyavech, Athiwatr & Yuvaniyama, Chantana & Mungcharoen, Thumrongrut, 2010. "Analysis of steel production in Thailand: Environmental impacts and solutions," Energy, Elsevier, vol. 35(10), pages 4192-4200.
  10. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
  11. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
  12. Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
  13. Ya Chen & Xiaoli Fan & Qian Zhou, 2020. "An Inverted-U Impact of Environmental Regulations on Carbon Emissions in China’s Iron and Steel Industry: Mechanisms of Synergy and Innovation Effects," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
  14. Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Energy: Resources and Markets 162379, Fondazione Eni Enrico Mattei (FEEM).
  15. Choi, Bongseok & Park, Wooyoung & Yu, Bok-Keun, 2017. "Energy intensity and firm growth," Energy Economics, Elsevier, vol. 65(C), pages 399-410.
  16. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
  17. Stefan Vögele & Dirk Rübbelke & Kristina Govorukha & Matthias Grajewski, 2020. "Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany," Climatic Change, Springer, vol. 162(4), pages 1763-1778, October.
  18. Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
  19. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
  20. Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
  21. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
  22. Shiyi Chen, 2009. "Engine or drag: Can high energy consumption and CO 2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China, Springer;Higher Education Press, vol. 4(4), pages 548-571, December.
  23. Akimoto, Keigo & Sano, Fuminori & Homma, Takashi & Oda, Junichiro & Nagashima, Miyuki & Kii, Masanobu, 2010. "Estimates of GHG emission reduction potential by country, sector, and cost," Energy Policy, Elsevier, vol. 38(7), pages 3384-3393, July.
  24. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
  25. Hsu, Chung-Chun & Lo, Shang-Lien, 2017. "The potential for carbon abatement in Taiwan’s steel industry and an analysis of carbon abatement trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1312-1323.
  26. Davood Askarany & Hassan Yazdifar & Kevin Dow, 2021. "B2B Networking, Renewable Energy, and Sustainability," JRFM, MDPI, vol. 14(7), pages 1-13, June.
  27. Sano, Fuminori & Wada, Kenichi & Akimoto, Keigo & Oda, Junichiro, 2015. "Assessments of GHG emission reduction scenarios of different levels and different short-term pledges through macro- and sectoral decomposition analyses," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 153-165.
  28. Okazaki, Teruo & Yamaguchi, Mitsutsune, 2011. "Accelerating the transfer and diffusion of energy saving technologies steel sector experience--Lessons learned," Energy Policy, Elsevier, vol. 39(3), pages 1296-1304, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.