IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v238y2014i1p18-30.html
   My bibliography  Save this item

Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.
  2. I. Campbell & M. Montaz Ali & M. Silverwood, 2020. "Solving a dial-a-flight problem using composite variables," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 123-153, April.
  3. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Operational effects of service level variations for the dial-a-ride problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 71-90, March.
  4. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
  5. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
  6. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
  7. Ge, Qian & Han, Ke & Liu, Xiaobo, 2021. "Matching and routing for shared autonomous vehicles in congestible network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  8. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
  9. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
  10. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "On-demand bus routing problem with dynamic stochastic requests and prepositioning," Working Papers 2022004, University of Antwerp, Faculty of Business and Economics.
  11. Vodopivec, Neža & Miller-Hooks, Elise, 2017. "An optimal stopping approach to managing travel-time uncertainty for time-sensitive customer pickup," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 22-37.
  12. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2020. "Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
  13. Karl F. Doerner & Richard F. Hartl, 2018. "Comments on: Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 21-24, April.
  14. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.
  15. Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
  16. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
  17. Johnsen, Lennart C. & Meisel, Frank, 2022. "Interrelated trips in the rural dial-a-ride problem with autonomous vehicles," European Journal of Operational Research, Elsevier, vol. 303(1), pages 201-219.
  18. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
  19. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
  20. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
  21. Lu, Chang & Wu, Yuehui & Yu, Shanchuan, 2022. "A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1031-1044.
  22. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "The on-demand bus routing problem with real-time traffic information," Working Papers 2022003, University of Antwerp, Faculty of Business and Economics.
  23. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.
  24. Bongiovanni, Claudia & Kaspi, Mor & Cordeau, Jean-François & Geroliminis, Nikolas, 2022. "A machine learning-driven two-phase metaheuristic for autonomous ridesharing operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
  25. Boysen, Nils & Schwerdfeger, Stefan & W. Ulmer, Marlin, 2023. "Robotized sorting systems: Large-scale scheduling under real-time conditions with limited lookahead," European Journal of Operational Research, Elsevier, vol. 310(2), pages 582-596.
  26. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
  27. Alves de Queiroz, Thiago & Iori, Manuel & Kramer, Arthur & Kuo, Yong-Hong, 2023. "Dynamic scheduling of patients in emergency departments," European Journal of Operational Research, Elsevier, vol. 310(1), pages 100-116.
  28. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
  29. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
  30. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
  31. Guo, Yuhan & Zhang, Yu & Boulaksil, Youssef, 2021. "Real-time ride-sharing framework with dynamic timeframe and anticipation-based migration," European Journal of Operational Research, Elsevier, vol. 288(3), pages 810-828.
  32. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
  33. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
  34. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
  35. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.