IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v28y2020i1d10.1007_s11750-019-00529-x.html
   My bibliography  Save this article

Solving a dial-a-flight problem using composite variables

Author

Listed:
  • I. Campbell

    (University of the Witwatersrand)

  • M. Montaz Ali

    (University of the Witwatersrand)

  • M. Silverwood

    (University of the Witwatersrand)

Abstract

A dial-a-flight problem (DAFP) is described as experienced by a tourist airline operating in Botswana. Typically, a daily schedule is drawn up manually by a team of experienced schedulers a few days before the day in question. In this research, the problem is modeled and optimized using a composite variable formulation of a multi-commodity network flow model. The method takes many of the problem constraints into account at the variable creation stage, reducing the problem size in terms of variables and constraints. As such the method is mostly suitable for highly constrained problems. Six daily lists of booking requests were supplied by the airline, and these were set up and solved. The results are compared with the actual costs incurred by the airline on the day in question. Additional ten lists of booking requests of various sizes were created and solved, and the results compared to results from an integer linear programming (ILP) formulation.

Suggested Citation

  • I. Campbell & M. Montaz Ali & M. Silverwood, 2020. "Solving a dial-a-flight problem using composite variables," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 123-153, April.
  • Handle: RePEc:spr:topjnl:v:28:y:2020:i:1:d:10.1007_s11750-019-00529-x
    DOI: 10.1007/s11750-019-00529-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-019-00529-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-019-00529-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Espinoza & R. Garcia & M. Goycoolea & G. L. Nemhauser & M. W. P. Savelsbergh, 2008. "Per-Seat, On-Demand Air Transportation Part I: Problem Description and an Integer Multicommodity Flow Model," Transportation Science, INFORMS, vol. 42(3), pages 263-278, August.
    2. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    3. R M Jorgensen & J Larsen & K B Bergvinsdottir, 2007. "Solving the Dial-a-Ride problem using genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1321-1331, October.
    4. Lloyd Clarke & Ellis Johnson & George Nemhauser & Zhongxi Zhu, 1997. "The aircraft rotation problem," Annals of Operations Research, Springer, vol. 69(0), pages 33-46, January.
    5. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware & Alysia M. Wilson, 2004. "UPS Optimizes Its Air Network," Interfaces, INFORMS, vol. 34(1), pages 15-25, February.
    6. Amy Cohn & Cynthia Barnhart, 2006. "Composite-variable modeling for service parts logistics," Annals of Operations Research, Springer, vol. 145(1), pages 383-383, July.
    7. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    8. Vanderbeck, F. & Wolsey, L. A., 1996. "An exact algorithm for IP column generation," LIDAM Reprints CORE 1242, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    10. Amy Cohn, 2006. "Composite-variable modeling for service parts logistics," Annals of Operations Research, Springer, vol. 144(1), pages 17-32, April.
    11. Faramroze G. Engineer & George L. Nemhauser & Martin W. P. Savelsbergh, 2011. "Dynamic Programming-Based Column Generation on Time-Expanded Networks: Application to the Dial-a-Flight Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 105-119, February.
    12. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    13. D Ronen, 2000. "Scheduling charter aircraft," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(3), pages 258-262, March.
    14. Detti, Paolo & Papalini, Francesco & Lara, Garazi Zabalo Manrique de, 2017. "A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare," Omega, Elsevier, vol. 70(C), pages 1-14.
    15. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    16. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    17. A. Erdmann & A. Nolte & A. Noltemeier & R. Schrader, 2001. "Modeling and Solving an Airline Schedule Generation Problem," Annals of Operations Research, Springer, vol. 107(1), pages 117-142, October.
    18. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    19. Radhika Subramanian & Richard P. Scheff & John D. Quillinan & D. Steve Wiper & Roy E. Marsten, 1994. "Coldstart: Fleet Assignment at Delta Air Lines," Interfaces, INFORMS, vol. 24(1), pages 104-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Root & Amy Cohn, 2008. "A novel modeling approach for express package carrier planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 670-683, October.
    2. Gaul, Daniela & Klamroth, Kathrin & Stiglmayr, Michael, 2022. "Event-based MILP models for ridepooling applications," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1048-1063.
    3. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    4. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    5. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    6. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    7. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    8. Johnsen, Lennart C. & Meisel, Frank, 2022. "Interrelated trips in the rural dial-a-ride problem with autonomous vehicles," European Journal of Operational Research, Elsevier, vol. 303(1), pages 201-219.
    9. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    10. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    11. Louwerse, I. & Mijnarends, J. & Meuffels, I. & Huisman, D. & Fleuren, H.A., 2012. "Scheduling Movements in the Network of an Express Service Provider," Econometric Institute Research Papers EI 2012-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Yucel, Ahmet & Dag, Ali & Oztekin, Asil & Carpenter, Mark, 2022. "A novel text analytic methodology for classification of product and service reviews," Journal of Business Research, Elsevier, vol. 151(C), pages 287-297.
    13. Rivi Sandhu & Diego Klabjan, 2007. "Integrated Airline Fleeting and Crew-Pairing Decisions," Operations Research, INFORMS, vol. 55(3), pages 439-456, June.
    14. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    15. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    16. Amy Cohn, 2006. "Composite-variable modeling for service parts logistics," Annals of Operations Research, Springer, vol. 144(1), pages 17-32, April.
    17. Gao, Yuan & Schmidt, Marie & Yang, Lixing & Gao, Ziyou, 2020. "A branch-and-price approach for trip sequence planning of high-speed train units," Omega, Elsevier, vol. 92(C).
    18. Lacasse-Guay, Eve & Desaulniers, Guy & Soumis, François, 2010. "Aircraft routing under different business processes," Journal of Air Transport Management, Elsevier, vol. 16(5), pages 258-263.
    19. Boland, N. L. & Clarke, L. W. & Nemhauser, G. L., 2000. "The asymmetric traveling salesman problem with replenishment arcs," European Journal of Operational Research, Elsevier, vol. 123(2), pages 408-427, June.
    20. Sami Gabteni & Mattias Grönkvist, 2009. "Combining column generation and constraint programming to solve the tail assignment problem," Annals of Operations Research, Springer, vol. 171(1), pages 61-76, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:28:y:2020:i:1:d:10.1007_s11750-019-00529-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.