IDEAS home Printed from https://ideas.repec.org/r/eee/econom/v106y2002i2p369-400.html
   My bibliography  Save this item

Modeling the interdependence of volatility and inter-transaction duration processes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
  2. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
  3. Artur Sokolovsky & Luca Arnaboldi, 2020. "A Generic Methodology for the Statistically Uniform & Comparable Evaluation of Automated Trading Platform Components," Papers 2009.09993, arXiv.org, revised Jun 2022.
  4. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
  5. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).
  6. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
  7. Fatima Sol Murta, 2007. "The Money Market Daily Session :an UHF-GARCH Model Applied to the Portuguese Case Before and After the Introduction Of the Minimum Reserve System of the Single Monetary Policy," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 50(3), pages 285-314.
  8. Clive Bowsher, 2004. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Model," Economics Series Working Papers 2003-W03, University of Oxford, Department of Economics.
  9. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
  10. Renault, Eric & Werker, Bas J.M., 2011. "Causality effects in return volatility measures with random times," Journal of Econometrics, Elsevier, vol. 160(1), pages 272-279, January.
  11. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
  12. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
  13. Marcelo Fernandes & Marco Aurélio Dos Santos Rocha, 0. "Are price limits on futures markets that cool? Evidence from the Brazilian Mercantile and Futures Exchange," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(2), pages 219-242.
  14. Simonsen, Ola, 2006. "Stock Data, Trade Durations, And Limit Order Book Information," Umeå Economic Studies 689, Umeå University, Department of Economics.
  15. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
  16. Simonsen, Ola, 2005. "An Empirical Model for Durations in Stocks," Umeå Economic Studies 657, Umeå University, Department of Economics.
  17. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
  18. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  19. Allen, David & Ng, K.H. & Peiris, Shelton, 2013. "Estimating and simulating Weibull models of risk or price durations: An application to ACD models," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 214-225.
  20. Grammig, Joachim & Theissen, Erik & Wuensche, Oliver, 2007. "Time and price impact of a trade: A structural approach," CFR Working Papers 07-12, University of Cologne, Centre for Financial Research (CFR).
  21. Karaa, Rabaa & Slim, Skander & Hmaied, Dorra Mezzez, 2018. "Trading intensity and the volume-volatility relationship on the Tunis Stock Exchange," Research in International Business and Finance, Elsevier, vol. 44(C), pages 88-99.
  22. Francisco Blasques & Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros," Papers 1812.07318, arXiv.org, revised Jan 2022.
  23. GIOT, Pierre, 1999. "Time transformations, intraday data and volatility models," LIDAM Discussion Papers CORE 1999044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  24. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
  25. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
  26. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
  27. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
  28. Dingan Feng & Peter X.-K. Song & Tony S. Wirjanto, 2008. "Time-Deformation Modeling Of Stock Returns Directed By Duration Processes," Working Papers 08010, University of Waterloo, Department of Economics.
  29. Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.
  30. Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.
  31. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
  32. Simonsen, Ola, 2006. "The Impact of News Releases on Trade Durations in Stocks -Empirical Evidence from Sweden," Umeå Economic Studies 688, Umeå University, Department of Economics.
  33. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
  34. Hira L. Koul & Indeewara Perera & Narayana Balakrishna, 2023. "A class of Minimum Distance Estimators in Markovian Multiplicative Error Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 87-115, May.
  35. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised Sep 2023.
  36. Samuel Gingras & William J. McCausland, 2020. "A Flexible Stochastic Conditional Duration Model," Papers 2005.09166, arXiv.org.
  37. Dingan Feng & Peter X.-K. Song & Tony S. Wirjanto, 2015. "Time-Deformation Modeling of Stock Returns Directed by Duration Processes," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 480-511, April.
  38. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
  39. Ola Simonsen, 2007. "An empirical model for durations in stocks," Annals of Finance, Springer, vol. 3(2), pages 241-255, March.
  40. Chun Liu & John M Maheu, 2010. "Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market," Working Papers tecipa-401, University of Toronto, Department of Economics.
  41. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
  42. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
  43. Alva, Kenedy & Romo, Juan & Ruiz Ortega, Esther, 2009. "Modelling intra-daily volatility by functional data analysis: an empirical application to the spanish stock market," DES - Working Papers. Statistics and Econometrics. WS ws092809, Universidad Carlos III de Madrid. Departamento de Estadística.
  44. Katarzyna Bien-Barkowska, 2011. "Distribution Choice for the Asymmetric ACD Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 11, pages 55-72.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.