IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v263y2020ics0306261920301562.html
   My bibliography  Save this item

A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
  2. Jobel Jose & Rajesh Kanna Parthasarathy & Senthil Kumar Arumugam, 2023. "Energy and Exergy Analysis of a Combined Cooling Heating and Power System with Regeneration," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
  3. Tafur-Escanta, Paul & López-Paniagua, Ignacio & Muñoz-Antón, Javier, 2023. "Thermodynamics analysis of the supercritical CO2 binary mixtures for Brayton power cycles," Energy, Elsevier, vol. 270(C).
  4. Rujun Zhang & Xiaohe Wang & Shuang Yang & Xin Shen, 2024. "Thermodynamic Analysis of a Cogeneration System Combined with Heat, Cold, and Electricity Based on the Supercritical CO 2 Power Cycle," Energies, MDPI, vol. 17(7), pages 1-20, April.
  5. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
  6. Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
  7. Fernández-Torrijos, M. & González-Gómez, P.A. & Sobrino, C. & Santana, D., 2021. "Economic and thermo-mechanical design of tubular sCO2 central-receivers," Renewable Energy, Elsevier, vol. 177(C), pages 1087-1101.
  8. Battisti, F.G. & de Araujo Passos, L.A. & da Silva, A.K., 2022. "Economic and environmental assessment of a CO2 solar-powered plant with packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 314(C).
  9. Sun, Yan & Li, Hong-Wei & Wang, Di & Du, Chang-He, 2024. "A novel zero carbon emission system based on the complementary utilization of solar energy and hydrogen," Applied Energy, Elsevier, vol. 356(C).
  10. Zhu, Qingzi & Tan, Xu & Barari, Bamdad & Caccia, Mario & Strayer, Alexander R & Pishahang, Mehdi & Sandhage, Kenneth H. & Henry, Asegun, 2021. "Design of a 2 MW ZrC/W-based molten-salt-to-sCO2 PCHE for concentrated solar power," Applied Energy, Elsevier, vol. 300(C).
  11. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
  12. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
  13. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
  14. Miao, Xinyu & Zhang, Haochun & Sun, Wenbo & Wang, Qi & Zhang, Chenxu, 2022. "Optimization of a recompression supercritical nitrous oxide and helium Brayton cycle for space nuclear system," Energy, Elsevier, vol. 242(C).
  15. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  16. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
  17. Sun, Enhui & Ji, Hongfu & Wang, Xiangren & Ma, Wenjing & Zhang, Lei & Xu, Jinliang, 2023. "Proposal of multistage mass storage process to approach isothermal heat rejection of semi-closed S–CO2 cycle," Energy, Elsevier, vol. 270(C).
  18. José Ignacio Linares & Arturo Martín-Colino & Eva Arenas & María José Montes & Alexis Cantizano & José Rubén Pérez-Domínguez, 2023. "Carnot Battery Based on Brayton Supercritical CO 2 Thermal Machines Using Concentrated Solar Thermal Energy as a Low-Temperature Source," Energies, MDPI, vol. 16(9), pages 1-24, May.
  19. Chen, Yu-Zhi & Zhao, Xu-Dong & Xiang, Heng-Chao & Tsoutsanis, Elias, 2021. "A sequential model-based approach for gas turbine performance diagnostics," Energy, Elsevier, vol. 220(C).
  20. Gao, Lei & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2022. "Robustness analysis in supercritical CO2 power generation system configuration optimization," Energy, Elsevier, vol. 242(C).
  21. Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
  22. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
  23. Paul Tafur-Escanta & Robert Valencia-Chapi & Ignacio López-Paniagua & Luis Coco-Enríquez & Javier Muñoz-Antón, 2021. "Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants," Energies, MDPI, vol. 14(13), pages 1-27, July.
  24. Pérez-Álvarez, R. & Montoya, A. & López-Puente, J. & Santana, D., 2023. "Solar power tower plants with Bimetallic receiver tubes: A thermomechanical study of two- and three-layer composite tubes configurations," Energy, Elsevier, vol. 283(C).
  25. Cheng Zhang & Na Li & Guangqi An, 2024. "Review of Concentrated Solar Power Technology Applications in Photocatalytic Water Purification and Energy Conversion: Overview, Challenges and Future Directions," Energies, MDPI, vol. 17(2), pages 1-24, January.
  26. Liu, Zhiyuan & Wang, Peng & Sun, Xiangyu & Zhao, Ben, 2022. "Analysis on thermodynamic and economic performances of supercritical carbon dioxide Brayton cycle with the dynamic component models and constraint conditions," Energy, Elsevier, vol. 240(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.