IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics030626192100725x.html
   My bibliography  Save this article

Design of a 2 MW ZrC/W-based molten-salt-to-sCO2 PCHE for concentrated solar power

Author

Listed:
  • Zhu, Qingzi
  • Tan, Xu
  • Barari, Bamdad
  • Caccia, Mario
  • Strayer, Alexander R
  • Pishahang, Mehdi
  • Sandhage, Kenneth H.
  • Henry, Asegun

Abstract

To increase the power cycle efficiency and lower the levelized cost of electricity (LCOE) of concentrated solar power (CSP) plants, printed circuit heat exchangers (PCHEs) capable of operating above 700 °C with molten chloride salt and a sCO2-based fluid are needed. In this paper, the design of a high-pressure, high-temperature, 2 MW PCHE comprised of a thermomechanically-robust, zirconium carbide/tungsten (ZrC/W) composite is conducted for CSP plants. The ZrC/W composite is a material with high thermal conductivity, high stiffness, and high failure strength at high temperatures, along with excellent resistance to thermal cycling and thermal shock. In this work, a thermomechanical design analysis was conducted to select appropriate material thicknesses of the ZrC/W plates, and to determine the geometrical dimensions and the thermal performance of the PCHE. The influences of the plate number and heat exchanger length on power density and pressure drop have also been systematically investigated. Economic analyses were conducted to compare the cost of ZrC/W-based PCHEs to those comprised of IN740H (a state-of-the-art, nickel-based superalloy) and 316 stainless steel (316SS). At a sufficiently high plate production rate, the manufacturing cost of ZrC/W-based PCHEs can be significantly lower, while achieving a much higher power density, compared with state-of-the-art, nickel alloy-based and stainless steel-based PCHEs.

Suggested Citation

  • Zhu, Qingzi & Tan, Xu & Barari, Bamdad & Caccia, Mario & Strayer, Alexander R & Pishahang, Mehdi & Sandhage, Kenneth H. & Henry, Asegun, 2021. "Design of a 2 MW ZrC/W-based molten-salt-to-sCO2 PCHE for concentrated solar power," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s030626192100725x
    DOI: 10.1016/j.apenergy.2021.117313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100725X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    2. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Qingzi & Pishahang, Mehdi & Bichnevicius, Michael & Amy, Caleb & Caccia, Mario & Sandhage, Kenneth H. & Henry, Asegun, 2022. "The importance of maldistribution matching for thermal performance of compact heat exchangers," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Tafur-Escanta & Robert Valencia-Chapi & Ignacio López-Paniagua & Luis Coco-Enríquez & Javier Muñoz-Antón, 2021. "Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants," Energies, MDPI, vol. 14(13), pages 1-27, July.
    2. Jobel Jose & Rajesh Kanna Parthasarathy & Senthil Kumar Arumugam, 2023. "Energy and Exergy Analysis of a Combined Cooling Heating and Power System with Regeneration," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    3. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    4. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    5. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    6. Fernández-Torrijos, M. & González-Gómez, P.A. & Sobrino, C. & Santana, D., 2021. "Economic and thermo-mechanical design of tubular sCO2 central-receivers," Renewable Energy, Elsevier, vol. 177(C), pages 1087-1101.
    7. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    8. Gao, Lei & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2022. "Robustness analysis in supercritical CO2 power generation system configuration optimization," Energy, Elsevier, vol. 242(C).
    9. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    10. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
    11. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    12. Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
    13. Battisti, F.G. & de Araujo Passos, L.A. & da Silva, A.K., 2022. "Economic and environmental assessment of a CO2 solar-powered plant with packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 314(C).
    14. Miao, Xinyu & Zhang, Haochun & Sun, Wenbo & Wang, Qi & Zhang, Chenxu, 2022. "Optimization of a recompression supercritical nitrous oxide and helium Brayton cycle for space nuclear system," Energy, Elsevier, vol. 242(C).
    15. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
    17. Sun, Enhui & Ji, Hongfu & Wang, Xiangren & Ma, Wenjing & Zhang, Lei & Xu, Jinliang, 2023. "Proposal of multistage mass storage process to approach isothermal heat rejection of semi-closed S–CO2 cycle," Energy, Elsevier, vol. 270(C).
    18. Cheng Zhang & Na Li & Guangqi An, 2024. "Review of Concentrated Solar Power Technology Applications in Photocatalytic Water Purification and Energy Conversion: Overview, Challenges and Future Directions," Energies, MDPI, vol. 17(2), pages 1-24, January.
    19. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
    20. Liu, Zhiyuan & Wang, Peng & Sun, Xiangyu & Zhao, Ben, 2022. "Analysis on thermodynamic and economic performances of supercritical carbon dioxide Brayton cycle with the dynamic component models and constraint conditions," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s030626192100725x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.