IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v314y2022ics030626192200335x.html
   My bibliography  Save this article

Economic and environmental assessment of a CO2 solar-powered plant with packed-bed thermal energy storage

Author

Listed:
  • Battisti, F.G.
  • de Araujo Passos, L.A.
  • da Silva, A.K.

Abstract

Investigating supercritical natural fluids for efficient and clean energy production has become a trending research topic due to their technical and environmental advantages. However, on account of the supercritical operational conditions, using specially-developed components increases manufacturing prices, especially when dealing with solar-powered plants assisted by thermal energy storage (TES) systems. This paper assesses the economic and environmental trends of an integrated supercritical carbon dioxide (s-CO2) solar-powered plant. The system is composed of a packed-bed TES system, a solar field, and a power block while considering conventional backup heating. Transient year-around numerical simulations explore several operational conditions relying on detailed cost and typical meteorological year (TMY) data. Also, the modeling accounts for the system’s environmental sustainability through a penalization cost regarding CO2 emissions due to auxiliary heating. With parametric analyses, the study assesses the compromise solutions minimizing the levelized cost of energy (LCOE). The results revealed the possible feasibility of the integrated system using such a TES technology for s-CO2 and evidenced several venues for further examination. In the end, a sensitivity analysis investigates the influence of the specific costs and TMY data on the LCOE.

Suggested Citation

  • Battisti, F.G. & de Araujo Passos, L.A. & da Silva, A.K., 2022. "Economic and environmental assessment of a CO2 solar-powered plant with packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:appene:v:314:y:2022:i:c:s030626192200335x
    DOI: 10.1016/j.apenergy.2022.118913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200335X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    2. Crespi, Francesco & Sánchez, David & Rodríguez, José M. & Gavagnin, Giacomo, 2020. "A thermo-economic methodology to select sCO2 power cycles for CSP applications," Renewable Energy, Elsevier, vol. 147(P3), pages 2905-2912.
    3. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    4. Muñoz-Anton, J. & Biencinto, M. & Zarza, E. & Díez, L.E., 2014. "Theoretical basis and experimental facility for parabolic trough collectors at high temperature using gas as heat transfer fluid," Applied Energy, Elsevier, vol. 135(C), pages 373-381.
    5. Muhammad Khurram Khan, 2020. "Technological advancements and 2020," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(1), pages 1-2, January.
    6. Zaharil, Hafiz Aman, 2021. "An investigation on the usage of different supercritical fluids in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 168(C), pages 676-691.
    7. Liu, Jia & Chen, Haisheng & Xu, Yujie & Wang, Liang & Tan, Chunqing, 2014. "A solar energy storage and power generation system based on supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 64(C), pages 43-51.
    8. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    9. Wang, Xurong & Li, Xiaoxiao & Li, Qibin & Liu, Lang & Liu, Chao, 2020. "Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions," Applied Energy, Elsevier, vol. 261(C).
    10. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    11. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    12. Hobold, Gustavo M. & da Silva, Alexandre K., 2017. "Critical phenomena and their effect on thermal energy storage in supercritical fluids," Applied Energy, Elsevier, vol. 205(C), pages 1447-1458.
    13. Osorio, Julian D. & Hovsapian, Rob & Ordonez, Juan C., 2016. "Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under di," Energy, Elsevier, vol. 115(P1), pages 353-368.
    14. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle," Applied Energy, Elsevier, vol. 199(C), pages 247-263.
    15. Singh, Rajinesh & Miller, Sarah A. & Rowlands, Andrew S. & Jacobs, Peter A., 2013. "Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant," Energy, Elsevier, vol. 50(C), pages 194-204.
    16. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    17. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    18. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
    19. Battisti, Felipe G. & Delsoto, Giovanni S. & da Silva, Alexandre K., 2018. "Transient analysis and optimization of a recuperative sCO2 Brayton cycle assisted by heat and mass storage systems," Energy, Elsevier, vol. 150(C), pages 979-991.
    20. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    21. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    22. Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe G. Battisti & Carlos F. Klein & Rodrigo A. Escobar & José M. Cardemil, 2023. "Exergy Analysis and Off-Design Modeling of a Solar-Driven Supercritical CO 2 Recompression Brayton Cycle," Energies, MDPI, vol. 16(12), pages 1-26, June.
    2. Gaviño, David & Cortés, Eduardo & García, Jesús & Calderón-Vásquez, Ignacio & Cardemil, José & Estay, Danilo & Barraza, Rodrigo, 2022. "A discrete element approach to model packed bed thermal storage," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    2. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    4. Delsoto, G.S. & Battisti, F.G. & da Silva, A.K., 2023. "Dynamic modeling and control of a solar-powered Brayton cycle using supercritical CO2 and optimization of its thermal energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 336-356.
    5. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    6. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    8. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    9. Ma, Yuegeng & Morozyuk, Tatiana & Liu, Ming & Yan, Junjie & Liu, Jiping, 2019. "Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach," Applied Energy, Elsevier, vol. 242(C), pages 1134-1154.
    10. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    11. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    12. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    13. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Gillard, Jonathon & Patchigolla, Kumar, 2022. "Thermo-economic analysis, optimisation and systematic integration of supercritical carbon dioxide cycle with sensible heat thermal energy storage for CSP application," Energy, Elsevier, vol. 238(PB).
    14. Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
    15. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
    17. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    19. Li, Xiang & Wang, Yang & Wu, Shuang & Xie, Leidong, 2018. "Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage," Energy, Elsevier, vol. 160(C), pages 1021-1029.
    20. Wang, Xurong & Li, Xiaoxiao & Li, Qibin & Liu, Lang & Liu, Chao, 2020. "Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:314:y:2022:i:c:s030626192200335x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.