IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v108y2013icp515-527.html
   My bibliography  Save this item

Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
  2. Harmathy, Norbert & Magyar, Zoltán & Folić, Radomir, 2016. "Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement," Energy, Elsevier, vol. 114(C), pages 302-317.
  3. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
  4. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  5. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
  6. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
  7. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
  8. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
  9. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
  10. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
  11. Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
  12. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2014. "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates," Applied Energy, Elsevier, vol. 134(C), pages 215-228.
  13. Favoino, Fabio & Overend, Mauro & Jin, Qian, 2015. "The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies," Applied Energy, Elsevier, vol. 156(C), pages 1-15.
  14. Stevanović, Sanja, 2016. "Parametric study of a cost-optimal, energy efficient office building in Serbia," Energy, Elsevier, vol. 117(P2), pages 492-505.
  15. Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
  16. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
  17. Košir, Mitja & Iglič, Nataša & Kunič, Roman, 2018. "Optimisation of heating, cooling and lighting energy performance of modular buildings in respect to location’s climatic specifics," Renewable Energy, Elsevier, vol. 129(PA), pages 527-539.
  18. Yao, Jian, 2014. "Determining the energy performance of manually controlled solar shades: A stochastic model based co-simulation analysis," Applied Energy, Elsevier, vol. 127(C), pages 64-80.
  19. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
  20. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
  21. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
  22. Silvia Cesari & Paolo Valdiserri & Maddalena Coccagna & Sante Mazzacane, 2020. "The Energy Saving Potential of Wide Windows in Hospital Patient Rooms, Optimizing the Type of Glazing and Lighting Control Strategy under Different Climatic Conditions," Energies, MDPI, vol. 13(8), pages 1-24, April.
  23. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
  24. Babak Raji & Martin J. Tenpierik & Andy Van den Dobbelsteen, 2017. "Early-Stage Design Considerations for the Energy-Efficiency of High-Rise Office Buildings," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
  25. Xue, Peng & Li, Qian & Xie, Jingchao & Zhao, Mengjing & Liu, Jiaping, 2019. "Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements," Applied Energy, Elsevier, vol. 233, pages 62-70.
  26. Haiqiang Liu & Zhihao Zhang & Xidong Ma & Weite Lu & Dongze Li & Shoichi Kojima, 2021. "Optimization Analysis of the Residential Window-to-Wall Ratio Based on Numerical Calculation of Energy Consumption in the Hot-Summer and Cold-Winter Zone of China," Sustainability, MDPI, vol. 13(11), pages 1-24, May.
  27. Shuo Chen & Bart J. Dewancker & Simin Yang & Jing Mao & Jie Chen, 2021. "Study on the Roof Solar Heating Storage System of Traditional Residences in Southern Shaanxi, China," IJERPH, MDPI, vol. 18(23), pages 1-27, November.
  28. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
  29. Waldo Bustamante & Sergio Vera & Alejandro Prieto & Claudio Vásquez, 2014. "Solar and Lighting Transmission through Complex Fenestration Systems of Office Buildings in a Warm and Dry Climate of Chile," Sustainability, MDPI, vol. 6(5), pages 1-16, May.
  30. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
  31. Lamnatou, Chr. & Mondol, J.D. & Chemisana, D. & Maurer, C., 2015. "Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the coupled building/system configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 178-191.
  32. Simeng Li & Yanqiu Cui & Nerija Banaitienė & Chunlu Liu & Mark B. Luther, 2021. "Sensitivity Analysis for Carbon Emissions of Prefabricated Residential Buildings with Window Design Elements," Energies, MDPI, vol. 14(19), pages 1-25, October.
  33. Favoino, Fabio & Fiorito, Francesco & Cannavale, Alessandro & Ranzi, Gianluca & Overend, Mauro, 2016. "Optimal control and performance of photovoltachromic switchable glazing for building integration in temperate climates," Applied Energy, Elsevier, vol. 178(C), pages 943-961.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.