IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp211-219.html
   My bibliography  Save this article

Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics

Author

Listed:
  • Mangkuto, Rizki A.
  • Rohmah, Mardliyahtur
  • Asri, Anindya Dian

Abstract

Design optimisation problems of window size and façade orientation in buildings have been investigated many times, with regard to energy and comfort criteria. To indicate daylight availability in indoor spaces, a number of daylight metrics have been proposed, but those metrics are not always fully accounted in the optimisation process. Also, most studies were conducted for locations with high latitude, where the sun is located most of the time either at the south or at the north part of the sky hemisphere, which is not the case in the tropics. Therefore, this article presents a simulation study to investigate the influence of window-to-wall ratio (WWR), wall reflectance, and window orientation on various daylight metrics and lighting energy demand in simple buildings located in the tropical climate. A simple approach for the multi-objective optimisation was proposed by classifying the results in six pairs of two different performance indicators. Solutions in all Pareto frontiers were filtered against the defined target criteria, and were accepted into the optimum solution space if they belong to at least 4 out of 6 Pareto frontiers, and were ranked either in the order of their mean distance to the utopia points, or in the order of number of times they belong to a Pareto frontier. Three optimum solutions are found, all of which belong to four Pareto frontiers. The most optimum solution with the least mean distance to the utopia points is the combination of WWR 30%, wall reflectance of 0.8, and south orientation. The proposed approach enables one to observe the inter-relationship between the involved performance indicators, while providing a possibility to visualise the boundaries of the solution space.

Suggested Citation

  • Mangkuto, Rizki A. & Rohmah, Mardliyahtur & Asri, Anindya Dian, 2016. "Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics," Applied Energy, Elsevier, vol. 164(C), pages 211-219.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:211-219
    DOI: 10.1016/j.apenergy.2015.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915014968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Danny H.W. & Wong, S.L., 2007. "Daylighting and energy implications due to shading effects from nearby buildings," Applied Energy, Elsevier, vol. 84(12), pages 1199-1209, December.
    2. Goia, Francesco & Haase, Matthias & Perino, Marco, 2013. "Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective," Applied Energy, Elsevier, vol. 108(C), pages 515-527.
    3. Chirarattananon, Surapong & Chaiwiwatworakul, Pipat & Pattanasethanon, Singthong, 2002. "Daylight availability and models for global and diffuse horizontal illuminance and irradiance for Bangkok," Renewable Energy, Elsevier, vol. 26(1), pages 69-89.
    4. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    5. Rakha, Tarek & Nassar, Khaled, 2011. "Genetic algorithms for ceiling form optimization in response to daylight levels," Renewable Energy, Elsevier, vol. 36(9), pages 2348-2356.
    6. Ng, Poh Khai & Mithraratne, Nalanie, 2014. "Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 736-745.
    7. Lu, Lin & Law, Kin Man, 2013. "Overall energy performance of semi-transparent single-glazed photovoltaic (PV) window for a typical office in Hong Kong," Renewable Energy, Elsevier, vol. 49(C), pages 250-254.
    8. Klainsek, Juan C., 1991. "Glazing and its influence on building energy behavior," Renewable Energy, Elsevier, vol. 1(3), pages 441-448.
    9. Perez, Yael Valerie & Capeluto, Isaac Guedi, 2009. "Climatic considerations in school building design in the hot-humid climate for reducing energy consumption," Applied Energy, Elsevier, vol. 86(3), pages 340-348, March.
    10. Janjai, Serm & Plaon, Piyanuch, 2011. "Estimation of sky luminance in the tropics using artificial neural networks: Modeling and performance comparison with the CIE model," Applied Energy, Elsevier, vol. 88(3), pages 840-847, March.
    11. Darula, Stanislav & Kittler, Richard & Kocifaj, Miroslav, 2010. "Luminous effectiveness of tubular light-guides in tropics," Applied Energy, Elsevier, vol. 87(11), pages 3460-3466, November.
    12. Skandalos, Nikolaos & Karamanis, Dimitris, 2015. "PV glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 306-322.
    13. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    14. Han, Jun & Lu, Lin & Yang, Hongxing, 2010. "Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings," Applied Energy, Elsevier, vol. 87(11), pages 3431-3437, November.
    15. Ochoa, Carlos E. & Aries, Myriam B.C. & van Loenen, Evert J. & Hensen, Jan L.M., 2012. "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Applied Energy, Elsevier, vol. 95(C), pages 238-245.
    16. Li, Danny H. W. & Lam, Joseph C., 2003. "An analysis of lighting energy savings and switching frequency for a daylit corridor under various indoor design illuminance levels," Applied Energy, Elsevier, vol. 76(4), pages 363-378, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
    2. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Chow, Stanley K.H. & Li, Danny H.W. & Lee, Eric W.M. & Lam, Joseph C., 2013. "Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls," Applied Energy, Elsevier, vol. 112(C), pages 1016-1024.
    4. Yibing Xue & Wenhan Liu, 2022. "A Study on Parametric Design Method for Optimization of Daylight in Commercial Building’s Atrium in Cold Regions," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    5. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    6. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    7. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    8. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    9. Li, Danny H.W. & Lou, Siwei & Lam, Joseph C. & Wu, Ronald H.T., 2016. "Determining solar irradiance on inclined planes from classified CIE (International Commission on Illumination) standard skies," Energy, Elsevier, vol. 101(C), pages 462-470.
    10. Tan, Yutong & Peng, Jinqing & Luo, Yimo & Luo, Zhengyi & Curcija, Charlie & Fang, Yueping, 2022. "Numerical heat transfer modeling and climate adaptation analysis of vacuum-photovoltaic glazing," Applied Energy, Elsevier, vol. 312(C).
    11. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    12. Yu, Xu & Su, Yuehong, 2015. "Daylight availability assessment and its potential energy saving estimation –A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 494-503.
    13. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    14. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    15. Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
    16. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    17. Zhang, Chengyan & Ji, Jie & Wang, Chuyao & Ke, Wei & Xie, Hao & Yu, Bendong, 2022. "Experimental and numerical studies on the thermal and electrical performance of a CdTe ventilated window integrated with vacuum glazing," Energy, Elsevier, vol. 244(PB).
    18. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    19. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2014. "Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates," Applied Energy, Elsevier, vol. 134(C), pages 215-228.
    20. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:211-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.