IDEAS home Printed from https://ideas.repec.org/r/cam/camdae/0752.html
   My bibliography  Save this item

Learning Curves For Energy Technology and Policy Analysis: A Critical Assessment

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tobias Wiesnethal & Arnaud Mercier & Burkhard Schade & H. Petric & Lazlo Szabo, 2010. "Quantitative Assessment of the Impact of the Strategic Energy Technology Plan on the European Power Sector," JRC Research Reports JRC61065, Joint Research Centre.
  2. Audrey Laude & Christian Jonen, 2011. "Biomass and CCS: The influence of the learning effect," Working Papers halshs-00829779, HAL.
  3. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
  4. Christian JONEN & Audrey LAUDE, 2011. "Biomasse and CCS: The Influence of the Learning Effect," LEO Working Papers / DR LEO 273, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
  5. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  6. Lim, Jin Han & Dally, Bassam B. & Chinnici, Alfonso & Nathan, Graham J., 2017. "Techno-economic evaluation of modular hybrid concentrating solar power systems," Energy, Elsevier, vol. 129(C), pages 158-170.
  7. Arias-Gaviria, Jessica & van der Zwaan, Bob & Kober, Tom & Arango-Aramburo, Santiago, 2017. "The prospects for Small Hydropower in Colombia," Renewable Energy, Elsevier, vol. 107(C), pages 204-214.
  8. Przemysław Kaszyński & Jacek Kamiński, 2020. "Coal Demand and Environmental Regulations: A Case Study of the Polish Power Sector," Energies, MDPI, vol. 13(6), pages 1-24, March.
  9. Hansson, Anders & Bryngelsson, Mårten, 2009. "Expert opinions on carbon dioxide capture and storage--A framing of uncertainties and possibilities," Energy Policy, Elsevier, vol. 37(6), pages 2273-2282, June.
  10. Lee, Kangil & Han, Taek-Whan, 2016. "How vulnerable is the emissions market to transaction costs?: An ABMS Approach," Energy Policy, Elsevier, vol. 90(C), pages 273-286.
  11. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  12. Arias-Gaviria, Jessica & Carvajal-Quintero, Sandra Ximena & Arango-Aramburo, Santiago, 2019. "Understanding dynamics and policy for renewable energy diffusion in Colombia," Renewable Energy, Elsevier, vol. 139(C), pages 1111-1119.
  13. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
  14. Adela Conchado & Pedro Linares, 2017. "A New ‘Cut’ on Technological Innovation Aiming for Sustainability in a Globalized World," SPRU Working Paper Series 2017-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
  15. Egging, Ruud, 2013. "Drivers, trends, and uncertainty in long-term price projections for energy management in public buildings," Energy Policy, Elsevier, vol. 62(C), pages 617-624.
  16. Sovacool, Benjamin K. & Gilbert, Alex & Nugent, Daniel, 2014. "Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses," Energy, Elsevier, vol. 74(C), pages 906-917.
  17. Nepal, Rabindra, 2011. "The roles and potentials of renewable energy in less-developed economies," MPRA Paper 31878, University Library of Munich, Germany, revised 29 Jun 2011.
  18. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
  19. Hayward, Jennifer A. & Graham, Paul W., 2013. "A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies," Energy Economics, Elsevier, vol. 40(C), pages 537-548.
  20. Laude, Audrey & Jonen, Christian, 2013. "Biomass and CCS: The influence of technical change," Energy Policy, Elsevier, vol. 60(C), pages 916-924.
  21. repec:dau:papers:123456789/13149 is not listed on IDEAS
  22. Ye Duan & Zenglin Han & Hailin Mu & Jun Yang & Yonghua Li, 2019. "Research on the Impact of Various Emission Reduction Policies on China’s Iron and Steel Industry Production and Economic Level under the Carbon Trading Mechanism," Energies, MDPI, vol. 12(9), pages 1-26, April.
  23. Arias-Gaviria, Jessica & Larsen, Erik R. & Arango-Aramburo, Santiago, 2018. "Understanding the future of Seawater Air Conditioning in the Caribbean: A simulation approach," Utilities Policy, Elsevier, vol. 53(C), pages 73-83.
  24. Kessides, Ioannis N., 2012. "The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise," Energy Policy, Elsevier, vol. 48(C), pages 185-208.
  25. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
  26. Hanee Ryu & Hyejae Jung, 2021. "Impact of public R&D as market matures: Evidence from solar PV industry," Energy & Environment, , vol. 32(8), pages 1543-1558, December.
  27. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
  28. Nepal, Rabindra, 2012. "Roles and potentials of renewable energy in less-developed economies: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2200-2206.
  29. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.