IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc16/145669.html
   My bibliography  Save this paper

Welfare and Redistribution Effects of Alternative Tariffs in Energy Markets with Solar Power

Author

Listed:
  • Radulescu, Doina
  • Pavanini, Nicola
  • Feger, Fabian

Abstract

Renewable energy production via photovoltaic (PV) installations has increasingly taken off during the last years. This trend is desirable from an environmental perspective, but it challenges the financing of utilities' energy infrastructure networks. This happens because buildings with PV installations still require energy from the network, leaving the fixed costs of grid maintenance unchanged, but contribute less to the grid costs, as they mostly pay volumetric charges and intermittently produce their own energy. In this paper we propose an alternative tariff scheme to both incentivize PV adoptions and guarantee the sustainability of network costs. We use detailed data on energy consumption, income, wealth, and building characteristics for around 180,000 households in the Canton of Bern (Switzerland) in the years 2008-2013 to estimate models of energy demand and PV installation. We identify energy demand elasticities using a matching boundary discontinuity design that exploits price variation at spatial discontinuities, and we model PV adoption as a dynamic single agent investment framework. Using a counterfactual exercise we find that under a uniform tariff scheme low income households would experience a very small welfare loss.

Suggested Citation

  • Radulescu, Doina & Pavanini, Nicola & Feger, Fabian, 2016. "Welfare and Redistribution Effects of Alternative Tariffs in Energy Markets with Solar Power," VfS Annual Conference 2016 (Augsburg): Demographic Change 145669, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc16:145669
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/145669/1/VfS_2016_pid_6623.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    2. Sandra E. Black, 1999. "Do Better Schools Matter? Parental Valuation of Elementary Education," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 577-599.
    3. Alberini, Anna & Filippini, Massimo, 2011. "Response of residential electricity demand to price: The effect of measurement error," Energy Economics, Elsevier, vol. 33(5), pages 889-895, September.
    4. Herriges, Joseph A. & King, K.A., 1994. "Residential Demand for Electricity Under Block Rate Structures: Evidence from a Controlled Experiment," Staff General Research Papers Archive 1498, Iowa State University, Department of Economics.
    5. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    6. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    7. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    8. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    9. Fack, Gabrielle & Grenet, Julien, 2010. "When do better schools raise housing prices? Evidence from Paris public and private schools," Journal of Public Economics, Elsevier, vol. 94(1-2), pages 59-77, February.
    10. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    11. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    12. Martin S. Feldstein, 1972. "Equity and Efficiency in Public Sector Pricing: The Optimal Two-Part Tariff," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 86(2), pages 175-187.
    13. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    14. Severin Borenstein & Lucas W. Davis, 2012. "The Equity and Efficiency of Two-Part Tariffs in U.S. Natural Gas Markets," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 75-128.
    15. Severin Borenstein, 2012. "The Redistributional Impact of Nonlinear Electricity Pricing," American Economic Journal: Economic Policy, American Economic Association, vol. 4(3), pages 56-90, August.
    16. Atkinson, A. B. & Stiglitz, J. E., 1976. "The design of tax structure: Direct versus indirect taxation," Journal of Public Economics, Elsevier, vol. 6(1-2), pages 55-75.
    17. Gibbons, Stephen & Machin, Stephen & Silva, Olmo, 2013. "Valuing school quality using boundary discontinuities," Journal of Urban Economics, Elsevier, vol. 75(C), pages 15-28.
    18. Martin Feldstein & James M. Poterba, 1996. "Empirical Foundations of Household Taxation," NBER Books, National Bureau of Economic Research, Inc, number feld96-1, March.
    19. Maddock, Rodney & Castano, Elkin & Vella, Frank, 1992. "Estimating Electricity Demand: The Cost of Linearising the Budget Constraint," The Review of Economics and Statistics, MIT Press, vol. 74(2), pages 350-354, May.
    20. Herriges, Joseph A & King, Kathleen Kuester, 1994. "Residential Demand for Electricity under Inverted Block Rates: Evidence from a Controlled Experiment," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 419-430, October.
    21. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    22. Gibbons, Stephen & Machin, Stephen & Silva, Olmo, 2013. "Valuing school quality using boundary discontinuity," LSE Research Online Documents on Economics 45246, London School of Economics and Political Science, LSE Library.
    23. Severin Borenstein, 2017. "Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives, and Rebates," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 85-122.
    24. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    25. Nina Boogen & Souvik Datta & Massimo Filippini, 2014. "Going beyond tradition: Estimating residential electricity demand using an appliance index and energy services," CER-ETH Economics working paper series 14/200, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    26. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavanini, Nicola & Feger, Fabian & Radulescu, Doina, 2017. "Welfare and Redistribution in Residential Electricity Markets with Solar Power," CEPR Discussion Papers 12517, C.E.P.R. Discussion Papers.
    2. Mark Miller & Anna Alberini, 2015. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," CER-ETH Economics working paper series 15/223, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    3. Miller, Mark & Alberini, Anna, 2016. "Sensitivity of price elasticity of demand to aggregation, unobserved heterogeneity, price trends, and price endogeneity: Evidence from U.S. Data," Energy Policy, Elsevier, vol. 97(C), pages 235-249.
    4. Fabian Feger & Nicola Pavanini & Doina Radulescu, 2022. "Welfare and Redistribution in Residential Electricity Markets with Solar Power [Residential Consumption of Gas and Electricity in the US: The Role of Prices and Income]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(6), pages 3267-3302.
    5. Robert W. Hahn & Robert D. Metcalfe, 2021. "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, American Economic Association, vol. 111(5), pages 1658-1688, May.
    6. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    7. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
    8. Doko Tchatoka, Firmin & Varvaris, Vanessa, 2021. "Neighbourhood, school zoning and the housing market: Evidence from New South Wales," Journal of Housing Economics, Elsevier, vol. 54(C).
    9. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    10. Çetinkaya, Murat & Başaran, Alparslan A. & Bağdadioğlu, Necmiddin, 2015. "Electricity reform, tariff and household elasticity in Turkey," Utilities Policy, Elsevier, vol. 37(C), pages 79-85.
    11. Ohler, Adrienne M. & Billger, Sherrilyn M., 2014. "Does environmental concern change the tragedy of the commons? Factors affecting energy saving behaviors and electricity usage," Ecological Economics, Elsevier, vol. 107(C), pages 1-12.
    12. Fell, Harrison & Li, Shanjun & Paul, Anthony, 2014. "A new look at residential electricity demand using household expenditure data," International Journal of Industrial Organization, Elsevier, vol. 33(C), pages 37-47.
    13. Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    14. Cho, Seong-Hoon & Kim, Taeyoung & Kim, Hyun Jae & Park, Kihyun & Roberts, Roland K., 2015. "Regionally-varying and regionally-uniform electricity pricing policies compared across four usage categories," Energy Economics, Elsevier, vol. 49(C), pages 182-191.
    15. Nina Boogen & Souvik Datta & Massimo Filippini, 2014. "Going beyond tradition: Estimating residential electricity demand using an appliance index and energy services," CER-ETH Economics working paper series 14/200, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    16. Becka Brolinson, 2019. "Does Increasing Block Pricing Decrease Energy Use? Evidence from the Residential Electricity Market," Working Papers gueconwpa~19-19-06, Georgetown University, Department of Economics.
    17. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    18. Koichiro Ito, 2014. "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing," American Economic Review, American Economic Association, vol. 104(2), pages 537-563, February.
    19. Jia, Jun-Jun & Guo, Jin & Wei, Chu, 2021. "Elasticities of residential electricity demand in China under increasing-block pricing constraint: New estimation using household survey data," Energy Policy, Elsevier, vol. 156(C).
    20. Hung, Ming-Feng & Huang, Tai-Hsin, 2015. "Dynamic demand for residential electricity in Taiwan under seasonality and increasing-block pricing," Energy Economics, Elsevier, vol. 48(C), pages 168-177.

    More about this item

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc16:145669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.