IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa13p867.html
   My bibliography  Save this paper

Technological platforms and global opportunities

Author

Listed:
  • Lisa De Propris
  • Carlo Corradini

Abstract

In the last decades, innovation activity has been defined by an increasing complexity and a faster pace of the underlying technological change. Accordingly, several studies have shown that competitive systems of innovation benefit from being able to build upon a wide but integrated spectrum of technological capabilities characterised by a sustained dynamism in the level of inter-sectoral technology flows. In this context, technological platforms - defined as knowledge and scientific launching pads that spin out of key enabling technologies - may create the opportunity for technological externalities to take place across a set of related sectors through a swarm of increasingly applied and incremental innovations. In this paper, we look at the determinants of these technological platforms and explore the mechanisms through which these influence inter sectoral technology spillovers, thus shaping technological shifts within the broader economy. Within this framework, we examine what industrial policies are needed to enhance the spatial and cross-sectoral impact of technological platforms so as to maximise their spillover benefits. Using data on patents and patent citations obtained from the PATSTAT-CRIOS database, covering all patent applications made to the European Patent Office (EPO), we try to model the systemic nature of technology platforms. In particular, our aim is to provide empirical evidence that the presence of key enabling technologies at the base of the platform may lead to a more sustained interaction across second tier innovations characterised by a 'distant' knowledge base. Then, we endeavour to investigate the relationship that may take place between this process and the role played by the regional dimension. We first provide an overview of the main characteristics of key enabling technologies within the European system of innovation, developing a map of the knowledge flows that take place between technological sectors, along with descriptive elements related to their geographical distribution. Then, we try to test the hypothesis that innovations whose effects take place in a wide range of technological fields might increase the likelihood of innovation spillovers and innovation complementarities across related and unrelated sectors at the regional, national and European level. To conclude, we offer a discussion of the results through a policy perspective.

Suggested Citation

  • Lisa De Propris & Carlo Corradini, 2013. "Technological platforms and global opportunities," ERSA conference papers ersa13p867, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa13p867
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa13/ERSA2013_paper_00867.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    2. Robinson, Douglas K.R. & Rip, Arie & Mangematin, Vincent, 2007. "Technological agglomeration and the emergence of clusters and networks in nanotechnology," Research Policy, Elsevier, vol. 36(6), pages 871-879, July.
    3. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    4. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    5. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    6. Bronwyn H. Hall & Manuel Trajtenberg, 2004. "Uncovering GPTS with Patent Data," NBER Working Papers 10901, National Bureau of Economic Research, Inc.
    7. repec:fth:harver:1473 is not listed on IDEAS
    8. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    9. Nadiri, M.I., 1993. "Innovations and Technological Spillovers," Working Papers 93-31, C.V. Starr Center for Applied Economics, New York University.
    10. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    11. Patel, Pari & Pavitt, Keith, 1997. "The technological competencies of the world's largest firms: Complex and path-dependent, but not much variety," Research Policy, Elsevier, vol. 26(2), pages 141-156, May.
    12. David J. Teece & Richard Rumelt & Giovanni Dosi & Sidney Winter, 2000. "Understanding Corporate Coherence: Theory and Evidence," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 9, pages 264-293, Edward Elgar Publishing.
    13. Freeman, C., 1991. "Networks of innovators: A synthesis of research issues," Research Policy, Elsevier, vol. 20(5), pages 499-514, October.
    14. M. Ishaq Nadiri, 1993. "Innovations and Technological Spillovers," NBER Working Papers 4423, National Bureau of Economic Research, Inc.
    15. Douglas K. R. Robinson & Arie Rip & Vincent Mangematin, 2007. "Technological agglomeration and the emergence of clusters and networks in nanotechnology," Post-Print hal-00424519, HAL.
    16. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67, pages 297-297.
    17. Iammarino, Simona & McCann, Philip, 2006. "The structure and evolution of industrial clusters: Transactions, technology and knowledge spillovers," Research Policy, Elsevier, vol. 35(7), pages 1018-1036, September.
    18. Breschi, Stefano & Lissoni, Francesco & Malerba, Franco, 2003. "Knowledge-relatedness in firm technological diversification," Research Policy, Elsevier, vol. 32(1), pages 69-87, January.
    19. Suzuki, Jun & Kodama, Fumio, 2004. "Technological diversity of persistent innovators in Japan: Two case studies of large Japanese firms," Research Policy, Elsevier, vol. 33(3), pages 531-549, April.
    20. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    21. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    22. Francesco Lissoni & Bulat Sanditov & Gianluca Tarasconi, 2006. "The Keins Database on Academic Inventors: Methodology and Contents," KITeS Working Papers 181, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Sep 2006.
    23. Dong-Jae Kim & Bruce Kogut, 1996. "Technological Platforms and Diversification," Organization Science, INFORMS, vol. 7(3), pages 283-301, June.
    24. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    25. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    26. Bart Verspagen, 1997. "Measuring Intersectoral Technology Spillovers: Estimates from the European and US Patent Office Databases," Economic Systems Research, Taylor & Francis Journals, vol. 9(1), pages 47-65.
    27. Zvi Griliches, 1998. "The Search for R&D Spillovers," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 251-268 National Bureau of Economic Research, Inc.
    28. Maurseth, Per Botolf & Verspagen, Bart, 2002. " Knowledge Spillovers in Europe: A Patent Citations Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 531-545, December.
    29. Philip Cooke & Loet Leydesdorff, 2006. "Regional Development in the Knowledge-Based Economy: The Construction of Advantage," The Journal of Technology Transfer, Springer, vol. 31(1), pages 5-15, January.
    30. Arundel, Anthony & Kabla, Isabelle, 1998. "What percentage of innovations are patented? empirical estimates for European firms," Research Policy, Elsevier, vol. 27(2), pages 127-141, June.
    31. Per Botolf Maurseth & Bart Verspagen, 2002. "Knowledge Spillovers in Europe: A Patent Citations Analysis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 531-545, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa de Propris & Carlo Corradini, 2013. "Technology Platforms in Europe: An Empirical Investigation. WWWforEurope Working Paper No. 34," WIFO Studies, WIFO, number 46920, April.
    2. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    3. Carlo Corradini & Pelin Demirel & Giuliana Battisti, 2016. "Technological diversification within UK’s small serial innovators," Small Business Economics, Springer, vol. 47(1), pages 163-177, June.
    4. Qiu, Ranfeng & Cantwell, John, 2018. "General Purpose Technologies and local knowledge accumulation — A study on MNC subunits and local innovation centers," International Business Review, Elsevier, vol. 27(4), pages 826-837.
    5. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    6. René Belderbos & Leo Sleuwaegen & Reinhilde Veugelers, 2010. "Market Integration and Technological Leadership in Europe," European Economy - Economic Papers 2008 - 2015 403, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    7. Stephan, Annegret & Bening, Catharina R. & Schmidt, Tobias S. & Schwarz, Marius & Hoffmann, Volker H., 2019. "The role of inter-sectoral knowledge spillovers in technological innovations: The case of lithium-ion batteries," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    8. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    9. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    10. Michele Cincera & Ela Ince, 2019. "Types of Innovation and Firm performance," Working Papers TIMES² 2019-032, ULB -- Universite Libre de Bruxelles.
    11. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    12. repec:hal:spmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    13. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    14. Bart Leten & Rene Belderbos & Bart Van Looy, 2016. "Entry and Technological Performance in New Technology Domains: Technological Opportunities, Technology Competition and Technological Relatedness," Journal of Management Studies, Wiley Blackwell, vol. 53(8), pages 1257-1291, December.
    15. Feng Zhang & Guohua Jiang, 2019. "Combination of Complementary Technological Knowledge to Generate “Hard to Imitate” Technologies," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-24, June.
    16. Estolatan, Eric & Geuna, Aldo, 2019. "Looking forward via the Past: An Investigation of the Evolution of the Knowledge Base of Robotics Firms," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201904, University of Turin.
    17. Maryann Feldman & Dieter Kogler & David Rigby, 2013. "rKnowledge: The Spatial Diffusion of rDNA Methods," Papers in Evolutionary Economic Geography (PEEG) 1311, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2013.
    18. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    19. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    20. Quintana-Garci­a, Cristina & Benavides-Velasco, Carlos A., 2008. "Innovative competence, exploration and exploitation: The influence of technological diversification," Research Policy, Elsevier, vol. 37(3), pages 492-507, April.
    21. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.

    More about this item

    JEL classification:

    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa13p867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.