IDEAS home Printed from https://ideas.repec.org/p/uto/dipeco/201422.html
   My bibliography  Save this paper

The Contribution of Academic Knowledge to the Value of Industry Inventions: Micro level evidence from patent inventors

Author

Listed:

Abstract

There is little evidence on the specific characteristics of the process of university-industry knowledge transfer leading to the generation of valuable inventions. Using the results of an original survey of industry inventors of European patents, resident in the Italian region of Piedmont, we analyze what determines the value of inventions that have benefited from academic knowledge. We find that inventors with greater cognitive proximity to the university and higher patenting output are more likely to interact with universities and to benefit from u niversity knowledge. After controlling for the characteristics of firms and technologies, we find that it is the transfer of theoretical academic knowledge rather than solutions to more technical and specified problems that leads to more valuable inventions. We found some evidence that knowledge transfer processes involving direct personal collaboration between the company inventor and the university researcher (which are characterized by higher trust as a result of social network embeddedness) are conducive to relatively higher value inventions.

Suggested Citation

  • Fassio, Claudio & Geuna, Aldo & Rossi, Federica, 2014. "The Contribution of Academic Knowledge to the Value of Industry Inventions: Micro level evidence from patent inventors," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201422, University of Turin.
  • Handle: RePEc:uto:dipeco:201422
    as

    Download full text from publisher

    File URL: http://www.est.unito.it/do/home.pl/Download?doc=/allegati/wp2014dip/wp_22_2014.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michelle Gittelman, 2005. "What Makes Research Socially Useful ? Complementarities between in-House Research and Firm-University Collaboration in Biotechnology," Revue d'Économie Industrielle, Programme National Persée, vol. 110(1), pages 57-73.
    2. Jeff S. Armstrong & Michael R. Darby & Lynne G. Zucker, 2003. "Commercializing knowledge: university science, knowledge capture and firm performance in biotechnology," Proceedings, Federal Reserve Bank of Dallas, issue Sep, pages 149-170.
    3. Siti Nur Zahara HAMZAH & Evan LAU, 2013. "The role of social factors in explaining crime," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(6(583)), pages 99-118, June.
    4. Stéphane Malo & Aldo Geuna, 2000. "Science-Technology Linkages in an Emerging Research Platform: The Case of Combinatorial Chemistry and Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(2), pages 303-321, February.
    5. Bronwyn H. Hall & Grid Thoma & Salvatore Torrisi, 2006. "The market value of patents and R&D: Evidence from European firms," KITeS Working Papers 186, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Nov 2006.
    6. Ejsing, Ann-Kathrine & Kaiser, Ulrich & Kongsted, Hans Christian & Laursen, Keld, 2013. "The Role of University Scientist Mobility for Industrial Innovation," IZA Discussion Papers 7470, Institute of Labor Economics (IZA).
    7. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    8. Bruneel, Johan & D'Este, Pablo & Salter, Ammon, 2010. "Investigating the factors that diminish the barriers to university-industry collaboration," Research Policy, Elsevier, vol. 39(7), pages 858-868, September.
    9. Christoph Grimpe & Katrin Hussinger, 2013. "Formal and Informal Knowledge and Technology Transfer from Academia to Industry: Complementarity Effects and Innovation Performance," Industry and Innovation, Taylor & Francis Journals, vol. 20(8), pages 683-700, November.
    10. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 2-16, January.
    11. Bodas Freitas, Isabel Maria & Geuna, Aldo & Rossi, Federica, 2013. "Finding the right partners: Institutional and personal modes of governance of university–industry interactions," Research Policy, Elsevier, vol. 42(1), pages 50-62.
    12. Alessandra Scandura, 2013. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," ERSA conference papers ersa13p128, European Regional Science Association.
    13. Jaffe, Adam B, 1989. "Real Effects of Academic Research," American Economic Review, American Economic Association, vol. 79(5), pages 957-970, December.
    14. George L. Priest & Benjamin Klein, 1984. "The Selection of Disputes for Litigation," The Journal of Legal Studies, University of Chicago Press, vol. 13(1), pages 1-56, January.
    15. Cockburn, Iain M & Henderson, Rebecca M, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    16. Guellec, Dominique & Pottelsberghe de la Potterie, Bruno v., 2000. "Applications, grants and the value of patent," Economics Letters, Elsevier, vol. 69(1), pages 109-114, October.
    17. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    18. Cristiano Antonelli & Claudio Fassio, 2014. "The heterogeneity of knowledge and the academic mode of knowledge governance: Italian evidence in the first part of the 20th century," Science and Public Policy, Oxford University Press, vol. 41(1), pages 15-28.
    19. Belderbos, Rene & Carree, Martin & Lokshin, Boris, 2004. "Cooperative R&D and firm performance," Research Policy, Elsevier, vol. 33(10), pages 1477-1492, December.
    20. Alan MacPherson, 2002. "research notes and comments: The contribution of academic-industry interaction to product innovation: The case of New York State's medical devices sector," Papers in Regional Science, Springer;Regional Science Association International, vol. 81(1), pages 121-129.
    21. Haskel, Jonathan & Wallis, Gavin, 2013. "Public support for innovation, intangible investment and productivity growth in the UK market sector," Economics Letters, Elsevier, vol. 119(2), pages 195-198.
    22. Aldo Geuna & Alessandro Muscio, 2008. "The governance of University knowledge transfer," SPRU Working Paper Series 173, SPRU - Science Policy Research Unit, University of Sussex Business School.
    23. Fontana, Roberto & Geuna, Aldo & Matt, Mireille, 2006. "Factors affecting university-industry R&D projects: The importance of searching, screening and signalling," Research Policy, Elsevier, vol. 35(2), pages 309-323, March.
    24. Nicolas van Zeebroeck, 2011. "The puzzle of patent value indicators," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 20(1), pages 33-62.
    25. Julie Callaert & Bart Van Looy & Arnold Verbeek & Koenraad Debackere & Bart Thijs, 2006. "Traces of Prior Art: An analysis of non-patent references found in patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 69(1), pages 3-20, October.
    26. Scott Shane, 2001. "Technological Opportunities and New Firm Creation," Management Science, INFORMS, vol. 47(2), pages 205-220, February.
    27. Scherer, F. M. & Harhoff, Dietmar, 2000. "Technology policy for a world of skew-distributed outcomes," Research Policy, Elsevier, vol. 29(4-5), pages 559-566, April.
    28. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    29. Arundel, Anthony & Kabla, Isabelle, 1998. "What percentage of innovations are patented? empirical estimates for European firms," Research Policy, Elsevier, vol. 27(2), pages 127-141, June.
    30. Belderbos, Rene & Carree, Martin & Lokshin, Boris, 2004. "Cooperative R&D and firm performance," Research Policy, Elsevier, vol. 33(10), pages 1477-1492, December.
    31. Giuri, Paola & Mariani, Myriam, 2007. "Inventors and invention processes in Europe: Results from the PatVal-EU survey," Research Policy, Elsevier, vol. 36(8), pages 1105-1106, October.
    32. Tijssen, Robert J. W., 2002. "Science dependence of technologies: evidence from inventions and their inventors," Research Policy, Elsevier, vol. 31(4), pages 509-526, May.
    33. Acs, Zoltan J & Audretsch, David B, 1988. "Innovation in Large and Small Firms: An Empirical Analysis," American Economic Review, American Economic Association, vol. 78(4), pages 678-690, September.
    34. Mansfield, Edwin, 1998. "Academic research and industrial innovation: An update of empirical findings1," Research Policy, Elsevier, vol. 26(7-8), pages 773-776, April.
    35. Veugelers, Reinhilde & Cassiman, Bruno & Arts, Sam, 2012. "Mind the gap: capturing value from basic research: boundary crossing inventors and partnerships," CEPR Discussion Papers 9215, C.E.P.R. Discussion Papers.
    36. Autant-Bernard, Corinne, 2001. "Science and knowledge flows: evidence from the French case," Research Policy, Elsevier, vol. 30(7), pages 1069-1078, August.
    37. Ariel Pakes & Margaret Simpson, 1989. "Patent Renewal Data," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 20(1989 Micr), pages 331-410.
    38. Laursen, Keld & Salter, Ammon, 2004. "Searching high and low: what types of firms use universities as a source of innovation?," Research Policy, Elsevier, vol. 33(8), pages 1201-1215, October.
    39. Eleftherios Sapsalis & Bruno Van Pottelsberghe, 2003. "Insight into the patenting performance of Belgian universities," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 46(3), pages 37-58.
    40. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    41. Joshua Lerner, 1994. "The Importance of Patent Scope: An Empirical Analysis," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 319-333, Summer.
    42. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    43. Thursby, Jerry G & Jensen, Richard & Thursby, Marie C, 2001. "Objectives, Characteristics and Outcomes of University Licensing: A Survey of Major U.S. Universities," The Journal of Technology Transfer, Springer, vol. 26(1-2), pages 59-72, January.
    44. Bodas Freitas , Isabel Maria & Geuna, Aldo & Lawson, Cornelia & Rossi, Federica, 2014. "How Industry Inventors Collaborate with Academic Researchers: The choice between shared and unilateral governance forms," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201401, University of Turin.
    45. repec:agr:journl:v:6(583):y:2013:i:6(583):p:99-118 is not listed on IDEAS
    46. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 27-28, January.
    47. Perkmann, Markus & Walsh, Kathryn, 2008. "Engaging the scholar: Three types of academic consulting and their impact on universities and industry," Research Policy, Elsevier, vol. 37(10), pages 1884-1891, December.
    48. Reitzig, Markus, 2003. "What determines patent value?: Insights from the semiconductor industry," Research Policy, Elsevier, vol. 32(1), pages 13-26, January.
    49. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    50. Mariagrazia Squicciarini & Hélène Dernis & Chiara Criscuolo, 2013. "Measuring Patent Quality: Indicators of Technological and Economic Value," OECD Science, Technology and Industry Working Papers 2013/3, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanne Peeters & Julie Callaert & Bart Looy, 2020. "Do firms profit from involving academics when developing technology?," The Journal of Technology Transfer, Springer, vol. 45(2), pages 494-521, April.
    2. Sapsalis, Eleftherios & van Pottelsberghe de la Potterie, Bruno & Navon, Ran, 2006. "Academic versus industry patenting: An in-depth analysis of what determines patent value," Research Policy, Elsevier, vol. 35(10), pages 1631-1645, December.
    3. Alessandra Scandura, 2019. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1029-1069, August.
    4. Bodas Freitas , Isabel Maria & Geuna, Aldo & Lawson, Cornelia & Rossi, Federica, 2014. "How Industry Inventors Collaborate with Academic Researchers: The choice between shared and unilateral governance forms," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201401, University of Turin.
    5. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    6. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    7. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    8. Gersbach, Hans & Sorger, Gerhard & Amon, Christian, 2018. "Hierarchical growth: Basic and applied research," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 434-459.
    9. Rene Belderbos & Victor Gilsing & Shinya Suzuki, 2015. "Direct and mediated ties to universities: ‘Scientific’ absorptive capacity and innovation performance of pharmaceutical firms," Working Papers of Department of Management, Strategy and Innovation, Leuven 504836, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
    10. Nola Hewitt-Dundas, 2013. "The role of proximity in university-business cooperation for innovation," The Journal of Technology Transfer, Springer, vol. 38(2), pages 93-115, April.
    11. Foray, Dominique & Lissoni, Francesco, 2010. "University Research and Public–Private Interaction," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 275-314, Elsevier.
    12. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    13. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2012. "The nexus between science and industry: evidence from faculty inventions," The Journal of Technology Transfer, Springer, vol. 37(5), pages 755-776, October.
    14. Isabel Maria Bodas Freitas & Aldo Geuna & Federica Rossi, 2011. "University–Industry Interactions: The Unresolved Puzzle," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 11, Edward Elgar Publishing.
    15. A. Bellucci & L. Pennacchio, 2016. "University knowledge and firm innovation: evidence from European countries," The Journal of Technology Transfer, Springer, vol. 41(4), pages 730-752, August.
    16. Pluvia Zuniga, 2011. "The State of Patenting at Research Institutions in Developing Countries: Policy Approaches and Practices," WIPO Economic Research Working Papers 04, World Intellectual Property Organization - Economics and Statistics Division, revised Dec 2011.
    17. Hohberger, Jan, 2016. "Diffusion of science-based inventions," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 66-77.
    18. Fernández-Esquinas, Manuel & Pinto, Hugo & Yruela, Manuel Pérez & Pereira, Tiago Santos, 2016. "Tracing the flows of knowledge transfer: Latent dimensions and determinants of university–industry interactions in peripheral innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 266-279.
    19. Paola Cardamone & Valeria Pupo & Fernanda Ricotta, 2014. "Assessing The Impact Of University Technology Transfer On Firms’ Innovation," Working Papers 201403, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    20. repec:wip:wpaper:4 is not listed on IDEAS
    21. Nobuya Fukugawa, 2011. "Impacts and channels of university spillovers before the national innovation system reform in Japan," International Journal of Transitions and Innovation Systems, Inderscience Enterprises Ltd, vol. 1(4), pages 383-393.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uto:dipeco:201422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Piero Cavaleri or Marina Grazioli (email available below). General contact details of provider: https://edirc.repec.org/data/detorit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.