Advanced Search
MyIDEAS: Login to save this paper or follow this series

Global Coalitional Games

Contents:

Author Info

  • Giovanni Rossi

    ()

Registered author(s):

    Abstract

    Global coalitional games are TU cooperative games intended to model situations where the worth of coalitions varies across different partitions of the players. Formally, they are real-valued functions whose domain is the direct product of the subset lattice and the lattice of partitions of a finite player set. Therefore, the dimension of the associated vector space grows dramatically fast with the cardinality of the player set, inducing flexibility as well as complexity. Accordingly, some reasonable restrictions that reduce such a dimension are considered. The solution concepts associated with the Shapley value and the core are studied for the general (i.e., unrestricted) case.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.econ-pol.unisi.it/quaderni/415.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Department of Economics, University of Siena in its series Department of Economics University of Siena with number 415.

    as in new window
    Length:
    Date of creation: Dec 2003
    Date of revision:
    Handle: RePEc:usi:wpaper:415

    Contact details of provider:
    Postal: Piazza S.Francesco,7 - 53100 Siena
    Phone: (39)(0577)232620
    Fax: (39)(0577)232661
    Email:
    Web page: http://www.deps.unisi.it/
    More information through EDIRC

    Related research

    Keywords: lattice; lattice function; coalition; partition; Shapley value; core;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Itzhak Gilboa & Ehud Lehrer, 1990. "Global Games," Discussion Papers 922, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Itzhak Gilboa & Ehud Lehrer, 1989. "The Value of Information -- An Axiomatic Approach," Discussion Papers 835, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Pradeep Dubey & Robert J. Weber, 1977. "Probabilistic Values for Games," Cowles Foundation Discussion Papers 471, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:415. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fabrizio Becatti).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.