Advanced Search
MyIDEAS: Login to save this paper or follow this series

Small-area estimation with spatial similarity

Contents:

Author Info

Registered author(s):

    Abstract

    A class of composite estimators of small area quantities that exploit spatial (distancerelated) similarity is derived. It is based on a distribution-free model for the areas, but the estimators are aimed to have optimal design-based properties. Composition is applied also to estimate some of the global parameters on which the small area estimators depend. It is shown that the commonly adopted assumption of random effects is not necessary for exploiting the similarity of the districts (borrowing strength across the districts). The methods are applied in the estimation of the mean household sizes and the proportions of single-member households in the counties (comarcas) of Catalonia. The simplest version of the estimators is more efficient than the established alternatives, even though the extent of spatial similarity is quite modest.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.econ.upf.edu/docs/papers/downloads/1105.pdf
    File Function: Whole Paper
    Download Restriction: no

    Bibliographic Info

    Paper provided by Department of Economics and Business, Universitat Pompeu Fabra in its series Economics Working Papers with number 1105.

    as in new window
    Length:
    Date of creation: Jul 2008
    Date of revision: Sep 2009
    Handle: RePEc:upf:upfgen:1105

    Contact details of provider:
    Web page: http://www.econ.upf.edu/

    Related research

    Keywords: Auxiliary information; composite estimation; design-based estimator; exploiting similarity; model-based estimator; multivariate shrinkage; small-area estimation; spatial similarity;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Paul Elliott & Jon Wakefield, 2001. "Disease clusters: should they be investigated, and, if so, when and how?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 3-12.
    2. Nicholas T. Longford, 2004. "Missing data and small area estimation in the UK Labour Force Survey," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 341-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.