IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v23y2017i2d10.1007_s10985-016-9356-1.html
   My bibliography  Save this article

Longevity and concentration in survival times: the log-scale-location family of failure time models

Author

Listed:
  • Chiara Gigliarano

    (Department of Economics, University of Insubria)

  • Ugofilippo Basellini

    (Max Planck International Research Network on Aging and European Doctoral School of Demography)

  • Marco Bonetti

    (Bocconi University and Dondena Centre for Research on Social Dynamics and Public Policy)

Abstract

Evidence suggests that the increasing life expectancy levels at birth witnessed over the past centuries are associated with a decreasing concentration of the survival times. The purpose of this work is to study the relationships that exist between longevity and concentration measures for some regression models for the evolution of survival. In particular, we study a family of survival models that can be used to capture the observed trends in longevity and concentration over time. The parametric family of log-scale-location models is shown to allow for modeling different trends of expected value and concentration of survival times. An extension towards mixture models is also described in order to take into account scenarios where a fraction of the population experiences short term survival. Some results are also presented for such framework. The use of both the log-scale-location family and the mixture model is illustrated through an application to period life tables from the Human Mortality Database.

Suggested Citation

  • Chiara Gigliarano & Ugofilippo Basellini & Marco Bonetti, 2017. "Longevity and concentration in survival times: the log-scale-location family of failure time models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 254-274, April.
  • Handle: RePEc:spr:lifeda:v:23:y:2017:i:2:d:10.1007_s10985-016-9356-1
    DOI: 10.1007/s10985-016-9356-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-016-9356-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-016-9356-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:cai:popine:popu_p2001_13n1_0171 is not listed on IDEAS
    2. Väinö Kannisto, 2000. "Measuring the compression of mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 3(6).
    3. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    4. Vladimir Shkolnikov & Evgeny M. Andreev & Alexander Begun, 2003. "Gini coefficient as a life table function," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 8(11), pages 305-358.
    5. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    6. John Wilmoth & Shiro Horiuchi, 1999. "Rectangularization revisited: Variability of age at death within human populations," Demography, Springer;Population Association of America (PAA), vol. 36(4), pages 475-495, November.
    7. Duncan Gillespie & Meredith Trotter & Shripad Tuljapurkar, 2014. "Divergence in Age Patterns of Mortality Change Drives International Divergence in Lifespan Inequality," Demography, Springer;Population Association of America (PAA), vol. 51(3), pages 1003-1017, June.
    8. Tomasz Wrycza & Annette Baudisch, 2014. "The pace of aging: Intrinsic time scales in demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(57), pages 1571-1590.
    9. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    10. Alyson van Raalte & Pekka Martikainen & Mikko Myrskylä, 2014. "Lifespan Variation by Occupational Class: Compression or Stagnation Over Time?," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 73-95, February.
    11. John Bongaarts & Griffith Feeney, 2002. "How Long Do We Live?," Population and Development Review, The Population Council, Inc., vol. 28(1), pages 13-29, March.
    12. Dustin Brown & Mark Hayward & Jennifer Montez & Robert Hummer & Chi-Tsun Chiu & Mira Hidajat, 2012. "The Significance of Education for Mortality Compression in the United States," Demography, Springer;Population Association of America (PAA), vol. 49(3), pages 819-840, August.
    13. James Vaupel & Vladimir Romo, 2003. "Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz’s 90th birthday," Demography, Springer;Population Association of America (PAA), vol. 40(2), pages 201-216, May.
    14. Peter Congdon, 2004. "Modelling Trends and Inequality in Small Area Mortality," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(6), pages 603-622.
    15. Vladimir Canudas-Romo, 2008. "The modal age at death and the shifting mortality hypothesis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 19(30), pages 1179-1204.
    16. Muliere, Pietro & Scarsini, Marco, 1989. "A note on stochastic dominance and inequality measures," Journal of Economic Theory, Elsevier, vol. 49(2), pages 314-323, December.
    17. Katarzyna Ostasiewicz & Edyta Mazurek, 2013. "Comparison of the Gini and Zenga indexes using some theoretical income distributions abstract," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 23(1), pages 37-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aburto, José Manuel & Basellini, Ugofilippo & Baudisch, Annette & Villavicencio, Francisco, 2022. "Drewnowski’s index to measure lifespan variation: Revisiting the Gini coefficient of the life table," Theoretical Population Biology, Elsevier, vol. 148(C), pages 1-10.
    2. Jos'e Manuel Aburto & Ugofilippo Basellini & Annette Baudisch & Francisco Villavicencio, 2021. "Drewnowski's index to measure lifespan variation: Revisiting the Gini coefficient of the life table," Papers 2111.11256, arXiv.org.
    3. Jose Manuel Aburto & Jesús-Adrián Alvarez & Francisco Villavicencio & James W. Vaupel, 2019. "The threshold age of the lifetable entropy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(4), pages 83-102.
    4. Vasile Preda & Luigi-Ionut Catana, 2021. "Tsallis Log-Scale-Location Models. Moments, Gini Index and Some Stochastic Orders," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    5. Ugofilippo Basellini & Vladimir Canudas-Romo & Adam Lenart, 2019. "Location–Scale Models in Demography: A Useful Re-parameterization of Mortality Models," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 645-673, October.
    6. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Gigliarano & Ugofilippo Basellini & Marco Bonetti, 2014. "Concentration in survival times and longevity: The log-scale-location family of failure time models," Working Papers 066, "Carlo F. Dondena" Centre for Research on Social Dynamics (DONDENA), Università Commerciale Luigi Bocconi.
    2. Joseph T. Lariscy & Claudia Nau & Glenn Firebaugh & Robert A. Hummer, 2016. "Hispanic-White Differences in Lifespan Variability in the United States," Demography, Springer;Population Association of America (PAA), vol. 53(1), pages 215-239, February.
    3. Seaman, Rosie & Riffe, Tim & Leyland, Alastair H. & Popham, Frank & van Raalte, Alyson, 2019. "The increasing lifespan variation gradient by area-level deprivation: A decomposition analysis of Scotland 1981–2011," Social Science & Medicine, Elsevier, vol. 230(C), pages 147-157.
    4. Iñaki Permanyer & Jeroen Spijker & Amand Blanes & Elisenda Renteria, 2018. "Longevity and Lifespan Variation by Educational Attainment in Spain: 1960–2015," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2045-2070, December.
    5. Vasile Preda & Luigi-Ionut Catana, 2021. "Tsallis Log-Scale-Location Models. Moments, Gini Index and Some Stochastic Orders," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    6. José M. Aburto & Alyson A. van Raalte, 2017. "Lifespan dispersion in times of life expectancy fluctuation: the case of Central and Eastern Europe," MPIDR Working Papers WP-2017-018, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Francisco Goerlich, 2020. "Distributionally adjusted life expectancy as a life table function," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(14), pages 365-400.
    8. Alyson van Raalte & Pekka Martikainen & Mikko Myrskylä, 2014. "Lifespan Variation by Occupational Class: Compression or Stagnation Over Time?," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 73-95, February.
    9. Alyson Raalte & Hal Caswell, 2013. "Perturbation Analysis of Indices of Lifespan Variability," Demography, Springer;Population Association of America (PAA), vol. 50(5), pages 1615-1640, October.
    10. José Manuel Aburto & Alyson van Raalte, 2018. "Lifespan Dispersion in Times of Life Expectancy Fluctuation: The Case of Central and Eastern Europe," Demography, Springer;Population Association of America (PAA), vol. 55(6), pages 2071-2096, December.
    11. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    12. Iñaki Permanyer & Nathalie Scholl, 2019. "Global trends in lifespan inequality: 1950-2015," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    13. Marie-Pier Bergeron-Boucher & Marcus Ebeling & Vladimir Canudas-Romo, 2015. "Decomposing changes in life expectancy: Compression versus shifting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(14), pages 391-424.
    14. Ugofilippo Basellini & Vladimir Canudas-Romo & Adam Lenart, 2019. "Location–Scale Models in Demography: A Useful Re-parameterization of Mortality Models," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 645-673, October.
    15. Serena Vigezzi & Jose Manuel Aburto & Iñaki Permanyer & Virginia Zarulli, 2022. "Divergent trends in lifespan variation during mortality crises," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 46(11), pages 291-336.
    16. Isaac Sasson, 2016. "Trends in Life Expectancy and Lifespan Variation by Educational Attainment: United States, 1990–2010," Demography, Springer;Population Association of America (PAA), vol. 53(2), pages 269-293, April.
    17. Henrik Brønnum-Hansen & Juan Carlos Albizu-Campos Espiñeira & Camila Perera & Ingelise Andersen, 2023. "Trends in mortality patterns in two countries with different welfare models: comparisons between Cuba and Denmark 1955–2020," Journal of Population Research, Springer, vol. 40(2), pages 1-28, June.
    18. Suryakant Yadav, 2021. "Progress of Inequality in Age at Death in India: Role of Adult Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 523-550, July.
    19. Aburto, José Manuel & Basellini, Ugofilippo & Baudisch, Annette & Villavicencio, Francisco, 2022. "Drewnowski’s index to measure lifespan variation: Revisiting the Gini coefficient of the life table," Theoretical Population Biology, Elsevier, vol. 148(C), pages 1-10.
    20. Konstantinos N. Zafeiris, 2023. "Greece since the 1960s: the mortality transition revisited: a joinpoint regression analysis," Journal of Population Research, Springer, vol. 40(1), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:23:y:2017:i:2:d:10.1007_s10985-016-9356-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.