Advanced Search
MyIDEAS: Login to save this paper or follow this series

On Multicriteria Games with Uncountable Sets of Equilibria

Contents:

Author Info

Abstract

The famous Harsanyi's (1973) Theorem states that generically a finite game has an odd number of Nash equilibria in mixed strategies. In this paper, we show that for finite multicriteria games (games with vector-valued payoffs) this kind of result does not hold. In particular, we show, by examples, that it is possible to find balls in the space of games such that every game in this set has uncountably many equilibria so that uncountable sets of equilibria are not nongeneric in multicriteria games. Moreover, we point out that, surprisingly, all the equilibria of the games cor- responding to the center of these balls are essential, that is, they are stable with respect to every possible perturbation on the data of the game. However, if we consider the scalarization stable equilibrium concept (introduced in De Marco and Morgan (2007) and which is based on the scalarization technique for multicriteria games), then we show that it provides an effective selection device for the equilibria of the games corresponding to the centers of the balls. This means that the scalarization stable equilibrium concept can provide a sharper selection device with respect to the other classical refinement concepts in multicriteria games.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.csef.it/WP/wp242.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy in its series CSEF Working Papers with number 242.

as in new window
Length:
Date of creation: 18 Dec 2009
Date of revision:
Handle: RePEc:sef:csefwp:242

Contact details of provider:
Postal: I-80126 Napoli
Phone: +39 081 - 675372
Fax: +39 081 - 675372
Email:
Web page: http://www.csef.it/
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ritzberger, Klaus, 1994. "The Theory of Normal Form Games form the Differentiable Viewpoint," International Journal of Game Theory, Springer, vol. 23(3), pages 207-36.
  2. Giuseppe De Marco & Jacqueline Morgan, 2007. "A Refinement Concept For Equilibria In Multicriteria Games Via Stable Scalarizations," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 169-181.
  3. KOHLBERG, Elon & MERTENS, Jean-François, . "On the strategic stability of equilibria," CORE Discussion Papers RP -716, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Peter Borm & Freek van Megen & Stef Tijs, 1999. "A perfectness concept for multicriteria games," Computational Statistics, Springer, vol. 49(3), pages 401-412, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:242. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lia Ambrosio).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.