IDEAS home Printed from https://ideas.repec.org/p/rif/report/139.html
   My bibliography  Save this paper

Labour Productivity and Development of Carbon Competitiveness: Industry-Level Evidence from Europe

Author

Listed:
  • Kaitila, Ville

Abstract

A drastic decline in global greenhouse gas (GHG) emissions is needed to stop the climate change. This requires a variety of political and market mechanisms. Europe is globally at the forefront among the industrialised countries in reducing its GHG emissions. We analyse the development of emission intensities – GHG emissions relative to value added produced – and use a panel data to further our understanding of their evolution at the level of industries in 2008–2020 in Europe. We find that labour productivity is negatively associated with changes in GHG-emission intensities. Furthermore, higher investments, higher carbon prices within the ETS mechanism, and higher environmental taxes are associated with lower GHG-emission intensities. Consequently, policies that promote productivity growth and financial incentives to decrease emissions lead to lower emissions. Finland’s carbon competitiveness, as measured by relative GHG-emission intensities, varies by industries. See also Etla Brief no 123 Carbon Competitiveness is Shaped in Firms (in Finnish).

Suggested Citation

  • Kaitila, Ville, 2023. "Labour Productivity and Development of Carbon Competitiveness: Industry-Level Evidence from Europe," ETLA Reports 139, The Research Institute of the Finnish Economy.
  • Handle: RePEc:rif:report:139
    as

    Download full text from publisher

    File URL: https://www.etla.fi/wp-content/uploads/ETLA-Raportit-Reports-139.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuosmanen, Natalia & Maczulskij, Terhi, 2022. "The Role of Firm Dynamics in the Green Transition: Carbon Productivity Decomposition in Finnish Manufacturing," ETLA Working Papers 99, The Research Institute of the Finnish Economy.
    2. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    3. Bai, Caiquan & Du, Kerui & Yu, Ying & Feng, Chen, 2019. "Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis," Energy Economics, Elsevier, vol. 81(C), pages 698-708.
    4. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    5. Philippe Aghion & Roland Bénabou & Ralf Martin & Alexandra Roulet, 2023. "Environmental Preferences and Technological Choices: Is Market Competition Clean or Dirty?," American Economic Review: Insights, American Economic Association, vol. 5(1), pages 1-20, March.
    6. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    7. Pettersson, Fredrik & Maddison, David & Acar, Sevil & Söderholm, Patrik, 2014. "Convergence of Carbon Dioxide Emissions: A Review of the Literature," International Review of Environmental and Resource Economics, now publishers, vol. 7(2), pages 141-178, July.
    8. Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2016. "The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 129-148.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James R Brown & Gustav Martinsson & Christian Thomann, 2022. "Can Environmental Policy Encourage Technical Change? Emissions Taxes and R&D Investment in Polluting Firms," The Review of Financial Studies, Society for Financial Studies, vol. 35(10), pages 4518-4560.
    2. Haichao Fan & Joshua S. Graff Zivin & Zonglai Kou & Xueyue Liu & Huanhuan Wang, 2019. "Going Green in China: Firms’ Responses to Stricter Environmental Regulations," NBER Working Papers 26540, National Bureau of Economic Research, Inc.
    3. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    4. Martinsson, Gustav & Sajtos, László & Strömberg, Per & Thomann, Christian, 2022. "Carbon Pricing and Firm-Level CO2 Abatement: Evidence from a Quarter of a Century-Long Panel," Misum Working Paper Series 2022-10, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    5. Stern, Nicholas & Sivropoulos-Valero, Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," LSE Research Online Documents on Economics 114385, London School of Economics and Political Science, LSE Library.
    6. Danae Hernandez-Cortes & Kyle C. Meng & Paige Weber, 2022. "Decomposing Trends in US Air Pollution Disparities from Electricity," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 4, pages 91-124, National Bureau of Economic Research, Inc.
    7. Nicholas Stern & Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," CEP Discussion Papers dp1773, Centre for Economic Performance, LSE.
    8. Geoffrey Barrows & Helene Ollivier, 2016. "Emission intensity and firm dynamics: reallocation, product mix, and technology in India," GRI Working Papers 245, Grantham Research Institute on Climate Change and the Environment.
    9. Dobkowitz, Sonja, 2022. "Redistribution, Demand, and Sustainable Production," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242417, Verein für Socialpolitik / German Economic Association, revised 2022.
    10. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    11. Francesco Lamperti & Mauro Napoletano & Andrea Roventini, 2015. "Preventing environmental disasters : Market based vs command and control policies," SciencePo Working papers Main hal-03459560, HAL.
    12. Horbach, Jens & Rammer, Christian, 2022. "Climate change affectedness and innovation in German firms," ZEW Discussion Papers 22-008, ZEW - Leibniz Centre for European Economic Research.
    13. repec:hal:spmain:info:hdl:2441/5vt1fet9fq9o5pkgj2qh2vn1cm is not listed on IDEAS
    14. Marin, Giovanni & Vona, Francesco, 2021. "The impact of energy prices on socioeconomic and environmental performance: Evidence from French manufacturing establishments, 1997–2015," European Economic Review, Elsevier, vol. 135(C).
    15. Kwon, Ohyun & Zhao, Hao & Zhao, Min Qiang, 2023. "Global firms and emissions: Investigating the dual channels of emissions abatement," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    16. Barrows, Geoffrey & Ollivier, Hélène, 2018. "Cleaner firms or cleaner products? How product mix shapes emission intensity from manufacturing," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 134-158.
    17. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    18. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    19. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
    20. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
    21. Larch, Mario & Wanner, Joschka, 2017. "Carbon tariffs: An analysis of the trade, welfare, and emission effects," Journal of International Economics, Elsevier, vol. 109(C), pages 195-213.

    More about this item

    Keywords

    Greenhouse gas emissions (GHG); GHG-intensity; Carbon competitiveness; Productivity; ETS;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rif:report:139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kaija Hyvönen-Rajecki (email available below). General contact details of provider: https://edirc.repec.org/data/etlaafi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.