IDEAS home Printed from https://ideas.repec.org/h/nbr/nberch/14704.html
   My bibliography  Save this book chapter

Decomposing Trends in US Air Pollution Disparities from Electricity

In: Environmental and Energy Policy and the Economy, volume 4

Author

Listed:
  • Danae Hernandez-Cortes
  • Kyle C. Meng
  • Paige Weber

Abstract

This paper quantifies and decomposes recent trends in U.S. PM2.5 disparities from the electricity sector using a high-resolution pollution transport model. Between 2000-2018, PM2.5 concentrations from electricity fell by 89% for the average individual, more than double the decline rate in overall U.S. ambient PM2.5 concentrations. Across racial/ethnic groups, we detect a dramatic convergence: since 2000, the Black-White PM2.5 disparity from electricity has narrowed by 95% and the Hispanic-White PM2.5 disparity has narrowed by 93%, though these disparities still exist in 2018. A decomposition reveals nearly all of these disparity trends can be attributed roughly equally to improvements in emissions intensities and compositional changes in electric generators, with small contributions from scale and residential location changes. This suggests both local air pollution policies and recent coal-to-natural gas fuel switching have played major roles in reducing U.S. racial/ethnic pollution disparities from electricity. While we detect similarly large PM2.5 improvements for the average low and high income individual, PM2.5 disparities by income are relatively small, with little change over time.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Danae Hernandez-Cortes & Kyle C. Meng & Paige Weber, 2022. "Decomposing Trends in US Air Pollution Disparities from Electricity," NBER Chapters, in: Environmental and Energy Policy and the Economy, volume 4, pages 91-124, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberch:14704
    as

    Download full text from publisher

    File URL: http://www.nber.org/chapters/c14704.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Evan J. Ringquist, 2005. "Assessing evidence of environmental inequities: A meta-analysis," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 24(2), pages 223-247.
    2. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    3. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    4. Gilbert E. Metcalf, 2008. "An Empirical Analysis of Energy Intensity and Its Determinants at the State Level," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-26.
    5. Thomas M. Selden & Anne S. Forrest & James E. Lockhart, 1999. "Analyzing the Reductions in U.S. Air Pollution Emissions: 1970 to 1990," Land Economics, University of Wisconsin Press, vol. 75(1), pages 1-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ohler, Adrienne, 2023. "The Economics of Environmental Health Disparities: Who Benefits from Coal Power Plant Closures?," 2023 Annual Meeting, July 23-25, Washington D.C. 335760, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
    2. Julien Wolfersberger, 2019. "Growth and the environment: taking into account structural transformation," Working Papers hal-02156298, HAL.
    3. Jevan M. Cherniwchan & M. Scott Taylor, 2022. "International Trade and the Environment: Three Remaining Empirical Challenges," NBER Working Papers 30020, National Bureau of Economic Research, Inc.
    4. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    5. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    6. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    7. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    8. Ling-Yun He & Liang Wang, 2019. "Import Liberalization of Intermediates and Environment: Empirical Evidence from Chinese Manufacturing," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    9. Inácio Araúgo & Randall Jackson & Amir B. Ferreira Neto & Fernando Perobelli, 2018. "Environmental Costs of European Union Membership: A Structural Decomposition Analysis," Working Papers Working Paper 2018-04, Regional Research Institute, West Virginia University.
    10. Jonathan T. Hawkins-Pierot & Katherine R. H. Wagner, 2022. "Technology Lock-In and Optimal Carbon Pricing," CESifo Working Paper Series 9762, CESifo.
    11. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    12. Claire Brunel, 2017. "Pollution Offshoring and Emission Reductions in EU and US Manufacturing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 621-641, November.
    13. Polina Ustyuzhanina, 2022. "Decomposition of air pollution emissions from Swedish manufacturing," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 195-223, April.
    14. Mao, Jie & Wang, Chunhua & Yin, Haitao, 2023. "Corporate responses to air quality regulation: Evidence from a regional environmental policy in China," Regional Science and Urban Economics, Elsevier, vol. 98(C).
    15. Barrows, Geoffrey & Ollivier, Hélène, 2021. "Foreign demand, developing country exports, and CO2 emissions: Firm-level evidence from India," Journal of Development Economics, Elsevier, vol. 149(C).
    16. Geoffrey Barrows & Helene Ollivier, 2016. "Emission intensity and firm dynamics: reallocation, product mix, and technology in India," GRI Working Papers 245, Grantham Research Institute on Climate Change and the Environment.
    17. J. Scott Holladay & Lawrence D. LaPlue, 2021. "Decomposing changes in establishment‐level emissions with entry and exit," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 54(3), pages 1046-1071, November.
    18. Hartmut Egger & Udo Kreickemeier & Philipp M. Richter, 2021. "Environmental Policy and Firm Selection in the Open Economy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(4), pages 655-690.
    19. Blackburn, Christopher J. & Moreno-Cruz, Juan, 2021. "Energy efficiency in general equilibrium with input–output linkages," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    20. Michael Schymura & Andreas Löschel, 2012. "Trade and the Environment: An Application of the WIOD Database," EcoMod2012 3948, EcoMod.

    More about this item

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • I14 - Health, Education, and Welfare - - Health - - - Health and Inequality
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:14704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.