Advanced Search
MyIDEAS: Login

Finite State Equilibria in Dynamic Games

Contents:

Author Info

  • Michihiro Kandori
  • Ichiro Obara

Abstract

An equilibrium in an infinite horizon game is called a finite state equilibrium, if each player's action on the equilibrium path is given by an automaton with a finite state space. We provide a complete characterization of this class of equilibria and provide a recursive computational method to check the equilibrium conditions. This encompasses the majority of existing works on repeated games with private monitoring.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.economicdynamics.org/meetpapers/2007/paper_253.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Society for Economic Dynamics in its series 2007 Meeting Papers with number 253.

as in new window
Length:
Date of creation: 2007
Date of revision:
Handle: RePEc:red:sed007:253

Contact details of provider:
Postal: Society for Economic Dynamics Christian Zimmermann Economic Research Federal Reserve Bank of St. Louis PO Box 442 St. Louis MO 63166-0442 USA
Fax: 1-314-444-8731
Email:
Web page: http://www.EconomicDynamics.org/society.htm
More information through EDIRC

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Johannes Hörner & Wojciech Olszewski, 2006. "The Folk Theorem for Games with Private Almost-Perfect Monitoring," Econometrica, Econometric Society, vol. 74(6), pages 1499-1544, November.
  2. Hitoshi Matsushima, 2003. "Repeated Games with Private Monitoring: Two Players," CIRJE F-Series CIRJE-F-242, CIRJE, Faculty of Economics, University of Tokyo.
  3. Michihiro Kandori & Ichiro Obara, 2004. "Efficiency in Repeated Games Revisited: The Role of Private Strategies," Levine's Bibliography 122247000000000055, UCLA Department of Economics.
  4. V. Bhaskar & Ichiro Obara, 2000. "Belief-Based Equilibria in the Repeated Prisoners' Dilemma with Private Monitoring," Econometric Society World Congress 2000 Contributed Papers 1330, Econometric Society.
  5. Christopher Phelan & Andrzej Skrzypacz, 2007. "Private Monitoring with Infinite Histories," NajEcon Working Paper Reviews 843644000000000079, www.najecon.org.
  6. Jeffrey C. Ely & Johannes Horner & Wojciech Olszewski, 2003. "Belief-free Equilibria in Repeated Games," Levine's Working Paper Archive 666156000000000367, David K. Levine.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:red:sed007:253. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christian Zimmermann).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.