IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/55724.html
   My bibliography  Save this paper

A Minimax Bias Estimator for OLS Variances under Heteroskedasticity

Author

Listed:
  • Ahmed, Mumtaz
  • Zaman, Asad

Abstract

Analytic evaluation of heteroskedasticity consistent covariance matrix estimates (HCCME) is difficult because of the complexity of the formulae currently available. We obtain new analytic formulae for the bias of a class of estimators of the covariance matrix of OLS in a standard linear regression model. These formulae provide substantial insight into the properties and performance characteristics of these estimators. In particular, we find a new estimator which minimizes the maximum possible bias and improves substantially on the standard Eicker-White estimate.

Suggested Citation

  • Ahmed, Mumtaz & Zaman, Asad, 2014. "A Minimax Bias Estimator for OLS Variances under Heteroskedasticity," MPRA Paper 55724, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:55724
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/55724/1/MPRA_paper_55724.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
    2. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    3. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    2. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    3. Cyrus J. DiCiccio & Joseph P. Romano & Michael Wolf, 2016. "Improving weighted least squares inference," ECON - Working Papers 232, Department of Economics - University of Zurich, revised Nov 2017.
    4. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    5. Lin, Eric S. & Chou, Ta-Sheng, 2012. "A note on Bayesian interpretations of HCCME-type refinements for nonlinear GMM models," Economics Letters, Elsevier, vol. 116(3), pages 494-497.
    6. Francisco Cribari-Neto & Wilton Silva, 2011. "A new heteroskedasticity-consistent covariance matrix estimator for the linear regression model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 129-146, June.
    7. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 117855, University Library of Munich, Germany, revised Jul 2023.
    8. repec:jss:jstsof:16:i09 is not listed on IDEAS
    9. Sin, C.Y. (Chor-yiu) & Lee, Cheng-Few, 2021. "Using heteroscedasticity-non-consistent or heteroscedasticity-consistent variances in linear regression," Econometrics and Statistics, Elsevier, vol. 18(C), pages 117-142.
    10. Jianghao Chu & Tae-Hwy Lee & Aman Ullah & Haifeng Xu, 2020. "Exact Distribution of the F-statistic under Heteroskedasticity of Unknown Form for Improved Inference," Working Papers 202027, University of California at Riverside, Department of Economics.
    11. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    12. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    13. Richard, Patrick, 2017. "Robust heteroskedasticity-robust tests," Economics Letters, Elsevier, vol. 159(C), pages 28-32.
    14. Pavlidis Efthymios G. & Paya Ivan & Peel David A., 2013. "Nonlinear causality tests and multivariate conditional heteroskedasticity: a simulation study," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 297-312, May.
    15. Katarzyna Jabłońska, 2018. "Dealing With Heteroskedasticity Within The Modeling Of The Quality Of Life Of Older People," Statistics in Transition New Series, Polish Statistical Association, vol. 19(3), pages 423-452, September.
    16. Francisco Cribari-Neto & Maria da Gloria Lima, 2010. "Approximate inference in heteroskedastic regressions: A numerical evaluation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(4), pages 591-615.
    17. repec:jss:jstsof:11:i10 is not listed on IDEAS
    18. Hausman, Jerry & Palmer, Christopher, 2012. "Heteroskedasticity-robust inference in finite samples," Economics Letters, Elsevier, vol. 116(2), pages 232-235.
    19. Godfrey, L.G., 2006. "Tests for regression models with heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2715-2733, June.
    20. Michael O'Hara & Christopher F. Parmeter, 2013. "Nonparametric Generalized Least Squares in Applied Regression Analysis," Pacific Economic Review, Wiley Blackwell, vol. 18(4), pages 456-474, October.
    21. Eric S. Lin & Ta-Sheng Chou, 2018. "Finite-sample refinement of GMM approach to nonlinear models under heteroskedasticity of unknown form," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 1-28, January.
    22. Ke-Hai Yuan & Ying Cheng & Scott Maxwell, 2014. "Moderation Analysis Using a Two-Level Regression Model," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 701-732, October.

    More about this item

    Keywords

    Eicker-White; OLS; Bias; Worst Case Bias;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:55724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.