IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/52115.html
   My bibliography  Save this paper

SRI Cultivation in Andhra Pradesh : Achievements, Problems and Implications for GHGs and Work

Author

Listed:
  • Duvvuru, Narasimha Reddy
  • Motkuri, Venkatanarayana

Abstract

Strategies and solutions to meet the challenges of GHGs call for new methods and technologies. Potential options for the rice industry sector to contribute to the mitigation of, and adaptation to, climate change by increasing rice production in a physically sustainable manner are attracting growing research interest. One such area of interest is the new method of rice cultivation: the System of Rice Intensification (SRI). SRI is an innovative approach to rice cultivation but not a technology as such. The present papers examines advantages of SRI and its diffusion in India in general Andhra Pradesh in particular.

Suggested Citation

  • Duvvuru, Narasimha Reddy & Motkuri, Venkatanarayana, 2013. "SRI Cultivation in Andhra Pradesh : Achievements, Problems and Implications for GHGs and Work," MPRA Paper 52115, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:52115
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/52115/1/MPRA_paper_52115.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouman, B.A.M. & Hengsdijk, H. & Hardy, B. & Bindraban, P.S. & Tuong, T.P. & Ladha, J.K., 2002. "Water-wise Rice Production," IRRI Books, International Rice Research Institute (IRRI), number 281822.
    2. Reddy, V. Ratna & Reddy, P. Prudhvikar & Reddy, M. Srinivasa & Raju, Sree Rama, 2005. "Water Use Efficiency: A Study of System of Rice Intensification (SRI) Adoption in Andhra Pradesh," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 60(3), pages 1-15.
    3. C. Shambu Prasad, 2006. "System of Rice Intensification in India: Innovation History and Institutional Challenges," Working Papers id:723, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif Ahmed & M. Jahangir Alam & Akbar Hossain & A. K. M. Mominul Islam & Tahir H. Awan & Walid Soufan & Ahmed Ali Qahtan & Mohmmad K. Okla & Ayman El Sabagh, 2020. "Interactive Effect of Weeding Regimes, Rice Cultivars, and Seeding Rates Influence the Rice-Weed Competition under Dry Direct-Seeded Condition," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    2. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    3. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Syaharudin Zaibon & Mehnaz Mosharrof, 2021. "Assessing the Increase in Soil Moisture Storage Capacity and Nutrient Enhancement of Different Organic Amendments in Paddy Soil," Agriculture, MDPI, vol. 11(1), pages 1-15, January.
    4. Erenstein, Olaf, 2009. "Zero tillage in the rice-wheat systems of the Indo-Gangetic Plains: A review of impacts and sustainability implications," IFPRI discussion papers 916, International Food Policy Research Institute (IFPRI).
    5. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    6. Hakoomat Ali & Naeem Sarwar & Shah Muhammad & Omer Farooq & Atique-ur Rehman & Allah Wasaya & Tauqeer Ahmad Yasir & Khurram Mubeen & Muhammad Naeem Akhtar, 2021. "Foliar Application of Magnesium at Critical Stages Improved the Productivity of Rice Crop Grown under Different Cultivation Systems," Sustainability, MDPI, vol. 13(9), pages 1-11, April.
    7. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    8. Rodgers, Charles & Hellegers, Petra J.G.J., 2005. "Water pricing and valuation in Indonesia: case study of the Brantas River Basin," EPTD discussion papers 141, International Food Policy Research Institute (IFPRI).
    9. Berkhout, Ezra & Glover, Dominic & Kuyvenhoven, Arie, 2015. "On-farm impact of the System of Rice Intensification (SRI): Evidence and knowledge gaps," Agricultural Systems, Elsevier, vol. 132(C), pages 157-166.
    10. Tsujimoto, Yasuhiro & Horie, Takeshi & Randriamihary, Hamon & Shiraiwa, Tatsuhiko & Homma, Koki, 2009. "Soil management: The key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar," Agricultural Systems, Elsevier, vol. 100(1-3), pages 61-71, April.
    11. Noltze, Martin & Schwarze, Stefan & Qaim, Matin, 2013. "Impacts of natural resource management technologies on agricultural yield and household income: The system of rice intensification in Timor Leste," Ecological Economics, Elsevier, vol. 85(C), pages 59-68.
    12. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    13. Wielgosz, Benjamin & Mangheni, Margaret Najjingo & Tsegai, Daniel & Ringler, Claudia, 2012. "Malaria and agriculture: A global review of the literature with a focus on the application of integrated pest and vector management in East Africa and Uganda," IFPRI discussion papers 1232, International Food Policy Research Institute (IFPRI).
    14. M L Jat & Yadvinder Singh & M L Jat & MK Gathala & YS Saharawat & JK Ladha & YS Saharawat, 2019. "Conservation Agriculture in Intensive Rice-Wheat Rotation of Western Indo-Gangetic Plains-Effect on Crop Physiology, Yield, Water Productivity and Economic Profitability," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(3), pages 88-102, April.
    15. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
    16. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    17. V. Ratna Reddy & M. S. Ramamohan Rao & M. Venkataswamy, 2010. "'Slippage' : The Bane of Rural Drinking Water Sector (A Study of Extent and Causes in Andhra Pradesh)," Microeconomics Working Papers 22734, East Asian Bureau of Economic Research.
    18. Basavaraja, H. & Mahajanashetti, S.B. & Sivanagaraju, P., 2008. "Technological Change in Paddy Production: A Comparative Analysis of Traditional and SRI Methods of Cultivation," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 63(4), pages 1-12.
    19. Hall, Andy & Dijkman, Jeroen & Sulaiman, Rasheed, 2010. "Research Into Use: Investigating the Relationship between Agricultural Research and Innovation," MERIT Working Papers 2010-044, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    20. Turmuktini, Tien & Simarmata, Tualar & Joy, Benny & Resmini, Ania Citra, 2012. "Management of Water Saving and Organic based Fertilizers Technology for Remediation and Maintaining the Health of Paddy Soils and To Increase the Sustainability of Rice Productivity in Indonesia," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 2(04), pages 1-16, December.

    More about this item

    Keywords

    SRI; Rice Cultivation; Rice; Paddy; New Systems of Cultivation; Andhra Pradesh; Climate Change; Green House GAs; GHG Emission;
    All these keywords.

    JEL classification:

    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:52115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.