Advanced Search
MyIDEAS: Login

VAR for VaR: measuring systemic risk using multivariate regression quantiles

Contents:

Author Info

  • White, Halbert
  • Kim, Tae-Hwan
  • Manganelli, Simone

Abstract

This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market returns data to analyse spillovers in the values at risk (VaR) of different financial institutions. We construct impulse-response functions for the quantile processes of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/35372/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 35372.

as in new window
Length:
Date of creation: 17 Oct 2010
Date of revision:
Handle: RePEc:pra:mprapa:35372

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Quantile impulse-responses; spillover; codependence; CAViaR;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
  2. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(01), pages 46-68, March.
  3. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, October.
  4. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  5. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2010. "Measuring systemic risk," Working Paper 1002, Federal Reserve Bank of Cleveland.
  6. White, Halbert & Kim, Tae-Hwan & Manganelli, Simone, 2008. "Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR," Working Paper Series 0957, European Central Bank.
  7. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
  8. Andrews, Donald W. K., 1987. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Working Papers 645, California Institute of Technology, Division of the Humanities and Social Sciences.
  9. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(03), pages 295-317, September.
  10. Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
  11. Komunjer, Ivana, 2002. "Quasi-Maximum Likelihood Estimation for Conditional Quantiles," Working Papers 1139, California Institute of Technology, Division of the Humanities and Social Sciences.
  12. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(03), pages 295-325, June.
  13. Karun Adusumilli & Taisuke Otsu, 2014. "Empirical Likelihood for Random Sets," STICERD - Econometrics Paper Series /2014/574, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  14. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  2. Carlos Castro & Stijn Ferrari, 2011. "Measuring and testing for the systemically important financial institutions," DOCUMENTOS DE TRABAJO 008779, UNIVERSIDAD DEL ROSARIO.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:35372. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.