IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/35037.html
   My bibliography  Save this paper

Financial Management of Weather Risk with Energy Derivatives

Author

Listed:
  • Janda, Karel
  • Vylezik, Tomas

Abstract

In this paper we describe the major issues in the weather risk management. We focus on the management of financial risks connected with weather. We first provide a general discussion of the impact of weather on the economy. Then we follow with the overview of the development of the weather risk management. The core of the paper in then devoted to the role of weather derivatives as financial tools for weather risk management.

Suggested Citation

  • Janda, Karel & Vylezik, Tomas, 2011. "Financial Management of Weather Risk with Energy Derivatives," MPRA Paper 35037, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:35037
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/35037/1/MPRA_paper_35037.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geyser, J.M., 2004. "Weather Derivatives: Concept And Application For Their Use In South Africa," Working Papers 18038, University of Pretoria, Department of Agricultural Economics, Extension and Rural Development.
    2. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    3. Adam Clements & A S Hurn & K A Lindsay, 2008. "Estimating the Payoffs of Temperature-based Weather Derivatives," NCER Working Paper Series 33, National Centre for Econometric Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    2. Adam Clements & A S Hurn & K A Lindsay, 2008. "Developing analytical distributions for temperature indices for the purposes of pricing temperature-based weather derivatives," NCER Working Paper Series 34, National Centre for Econometric Research.
    3. Prabakaran, Sellamuthu & Garcia, Isabel C. & Mora, Jose U., 2020. "A temperature stochastic model for option pricing and its impacts on the electricity market," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 58-77.
    4. Matthias Ritter, 2012. "Can the market forecast the weather better than meteorologists?," SFB 649 Discussion Papers SFB649DP2012-067, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    6. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
    7. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    8. Mu, Xiaoyi, 2007. "Weather, storage, and natural gas price dynamics: Fundamentals and volatility," Energy Economics, Elsevier, vol. 29(1), pages 46-63, January.
    9. Helene Hamisultane, 2010. "Utility-based pricing of weather derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 503-525.
    10. Sun, Baojing & van Kooten, G. Cornelis, 2014. "Financial Weather Options for Crop Production," Working Papers 164323, University of Victoria, Resource Economics and Policy.
    11. Ross Baldick & Sergey Kolos & Stathis Tompaidis, 2006. "Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption," Operations Research, INFORMS, vol. 54(4), pages 627-642, August.
    12. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    13. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    14. Atak, Alev & Linton, Oliver & Xiao, Zhijie, 2011. "A semiparametric panel model for unbalanced data with application to climate change in the United Kingdom," Journal of Econometrics, Elsevier, vol. 164(1), pages 92-115, September.
    15. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    16. Ahčan, Aleš, 2012. "Statistical analysis of model risk concerning temperature residuals and its impact on pricing weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 131-138.
    17. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    18. Jacob Boudoukh & Matthew Richardson & YuQing Shen & Robert F. Whitelaw, 2003. "Do Asset Prices Reflect Fundamentals? Freshly Squeezed Evidence from the OJ Market," NBER Working Papers 9515, National Bureau of Economic Research, Inc.
    19. repec:wvu:wpaper:09-04 is not listed on IDEAS
    20. Markus Herrmann & Martin Hibbeln, 2021. "Seasonality in catastrophe bonds and market‐implied catastrophe arrival frequencies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 785-818, September.
    21. Hélène Hamisultane, 2008. "Sunshine-Factor Model with Treshold GARCH for Predicting Temperature of Weather Contracts," Working Papers halshs-00355857, HAL.

    More about this item

    Keywords

    Financial risk; Weather risk; Derivatives; Energy;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:35037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.