Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Review on Liao’s Dissertation Entitled “The Solutions on Multi-choice Games” and Related Publications


Author Info

  • Hsiao, Chih-Ru


In 2007, Liao finished his Ph.d. dissertation[18](Liao 2007) entitled “The Solutions on Multi-choice Games”. Chapter 1 of the dissertation mainly worked on two special cases of the H&R multi-choice Shapley value. One assumes that the weight function w(j) is a positive constant function for all j 6= 0 with w(0) = 0 and the other one assumes that the weight function w(j) = j for all j. If w(j) ’s are equal for all j > 0 then the formula of H&R multi-choice Shapley value can be significantly simplified to the original formula of the traditional Shapley value for the traditional games. Therefore, as a matter of fact, Definitions 1 and 2 in Chapter 1 of the dissertation [18] are simply the traditional Shapley value. Hence, in most part of Chapter 1, Liao was just writing “new results” of traditional games in terms of the notations of multi-choice games. Furthermore, the dissertation [18] did not cited [7](1994), [8](1995a) and [10](1996) which held the original ideas of its main part of chapter 1.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 30260.

as in new window
Date of creation: 12 Apr 2011
Date of revision:
Handle: RePEc:pra:mprapa:30260

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:
More information through EDIRC

Related research

Keywords: Multi-choice TU games; Shapley value; potential; w-consistency;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. repec:ebl:ecbull:v:3:y:2007:i:40:p:1-8 is not listed on IDEAS
  2. Hsiao, Chih-Ru, 1996. "Consistency of the Multi-Choice Shapley Value," MPRA Paper 18504, University Library of Munich, Germany.
  3. Derks, Jean & Peters, Hans, 1993. "A Shapley Value for Games with Restricted Coalitions," International Journal of Game Theory, Springer, vol. 21(4), pages 351-60.
  4. Yan-An Hwang & Yu-Hsien Liao, 2008. "Potential In Multi-Choice Cooperative Tu Games," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(05), pages 591-611.
  5. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
  6. Hsiao, Chih-Ru & Yeh, Yeong-Nan & Mo, Jie-Ping, 1994. "The Potential of Multi-choice Cooperative Games," MPRA Paper 15007, University Library of Munich, Germany.
  7. Hsiao, Chih-Ru, 1995. "A Value for Continuously-Many-Choice Cooperative Games," International Journal of Game Theory, Springer, vol. 24(3), pages 273-92.
  8. Hwang, Yan-An & Liao, Yu-Hsien, 2008. "Potential approach and characterizations of a Shapley value in multi-choice games," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 321-335, November.
  9. repec:ebl:ecbull:v:3:y:2008:i:43:p:1-7 is not listed on IDEAS
  10. Hsiao, Chih-Ru, 1995. "A note on non-essential players in multi-choice cooperative games," Games and Economic Behavior, Elsevier, vol. 8(2), pages 424-432.
  11. Yu-Hsien Liao, 2009. "Dividend approach and level consistency for the Derks and Peters value," Economics Bulletin, AccessEcon, vol. 29(2), pages 1054-1062.
Full references (including those not matched with items on IDEAS)



This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30260. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.