IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/27652.html
   My bibliography  Save this paper

A comprehensive literature classification of simulation optimisation methods

Author

Listed:
  • Hachicha, Wafik
  • Ammeri, Ahmed
  • Masmoudi, Faouzi
  • Chachoub, Habib

Abstract

Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measure

Suggested Citation

  • Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:27652
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/27652/1/MPRA_paper_27652.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kampf, M. & Kochel, P., 2006. "Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items," International Journal of Production Economics, Elsevier, vol. 104(1), pages 191-200, November.
    2. Andrew Martin & Te-Min Chang & Yeuhwern Yih & Rex Kincaid, 1998. "Using tabu search to determine the number of kanbans and lotsizes in a generic kanban system," Annals of Operations Research, Springer, vol. 78(0), pages 201-217, January.
    3. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    4. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    5. R D Hurrion & S Birgil, 1999. "A comparison of factorial and random experimental design methods for the development of regression and neural network simulation metamodels," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1018-1033, October.
    6. Eglese, R. W., 1990. "Simulated annealing: A tool for operational research," European Journal of Operational Research, Elsevier, vol. 46(3), pages 271-281, June.
    7. Marvin K. Nakayama & Ambuj Goyal & Peter W. Glynn, 1994. "Likelihood Ratio Sensitivity Analysis for Markovian Models of Highly Dependable Systems," Operations Research, INFORMS, vol. 42(1), pages 137-157, February.
    8. Marvin K. Nakayama & Perwez Shahabuddin, 1998. "Likelihood Ratio Derivative Estimation for Finite-Time Performance Measures in Generalized Semi-Markov Processes," Management Science, INFORMS, vol. 44(10), pages 1426-1441, October.
    9. Masson, Egill & Wang, Yih-Jeou, 1990. "Introduction to computation and learning in artificial neural networks," European Journal of Operational Research, Elsevier, vol. 47(1), pages 1-28, July.
    10. A. Shapiro & Y. Wardi, 1996. "Convergence Analysis of Stochastic Algorithms," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 615-628, August.
    11. Russell R. Barton & John S. Ivey, Jr., 1996. "Nelder-Mead Simplex Modifications for Simulation Optimization," Management Science, INFORMS, vol. 42(7), pages 954-973, July.
    12. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, September.
    13. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    14. Bettonvil, Bert, 1989. "A formal description of discrete event dynamic systems including infinitesimal perturbation analysis," European Journal of Operational Research, Elsevier, vol. 42(2), pages 213-222, September.
    15. Azadivar, Farhad & Lee, Young-Hae, 1988. "Optimization of discrete variable stochastic systems by computer simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 30(4), pages 331-345.
    16. Lutz, Christian M. & Roscoe Davis, K. & Sun, Minghe, 1998. "Determining buffer location and size in production lines using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 301-316, April.
    17. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    18. Michael C. Fu & Jian-Qiang Hu, 1999. "Efficient Design and Sensitivity Analysis of Control Charts Using Monte Carlo Simulation," Management Science, INFORMS, vol. 45(3), pages 395-413, March.
    19. Hunt, F.Y., 2005. "Sample path optimality for a Markov optimization problem," Stochastic Processes and their Applications, Elsevier, vol. 115(5), pages 769-779, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    2. Xiao Chen & Carolina Osorio & Bruno Filipe Santos, 2019. "Simulation-Based Travel Time Reliable Signal Control," Transportation Science, INFORMS, vol. 53(2), pages 523-544, March.
    3. Andrzej Wędzik & Tomasz Siewierski & Michał Szypowski, 2019. "The Use of Black-Box Optimization Method for Determination of the Bus Connection Capacity in Electric Power Grid," Energies, MDPI, vol. 13(1), pages 1-21, December.
    4. Carolina Osorio & Linsen Chong, 2015. "A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 49(3), pages 623-636, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    2. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    3. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    4. Samer Hanoun & Asim Bhatti & Doug Creighton & Saeid Nahavandi & Phillip Crothers & Celeste Gloria Esparza, 2016. "Target coverage in camera networks for manufacturing workplaces," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1221-1235, December.
    5. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    6. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    7. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "A tabu search algorithm for the training of neural networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 282-291, February.
    8. Hawre Jalal & Bryan Dowd & François Sainfort & Karen M. Kuntz, 2013. "Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results," Medical Decision Making, , vol. 33(7), pages 880-890, October.
    9. Xiang He & Xiqun (Michael) Chen & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2017. "Optimal Time-Varying Pricing for Toll Roads Under Multiple Objectives: A Simulation-Based Optimization Approach," Transportation Science, INFORMS, vol. 51(2), pages 412-426, May.
    10. Van Breedam, Alex, 1995. "Improvement heuristics for the Vehicle Routing Problem based on simulated annealing," European Journal of Operational Research, Elsevier, vol. 86(3), pages 480-490, November.
    11. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    12. Arsham H., 1998. "Techniques for Monte Carlo Optimizing," Monte Carlo Methods and Applications, De Gruyter, vol. 4(3), pages 181-230, December.
    13. Shi, Wen & Liu, Zhixue & Shang, Jennifer & Cui, Yujia, 2013. "Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain," European Journal of Operational Research, Elsevier, vol. 229(3), pages 695-706.
    14. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.
    15. Özcan, Ugur, 2010. "Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-linear, mixed integer program and a simulated annealing algorithm," European Journal of Operational Research, Elsevier, vol. 205(1), pages 81-97, August.
    16. Kabirian, Alireza & Ólafsson, Sigurdur, 2011. "Continuous optimization via simulation using Golden Region search," European Journal of Operational Research, Elsevier, vol. 208(1), pages 19-27, January.
    17. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    18. Crauwels, H. A. J. & Potts, C. N. & Van Wassenhove, L. N., 1996. "Local search heuristics for single-machine scheduling with batching to minimize the number of late jobs," European Journal of Operational Research, Elsevier, vol. 90(2), pages 200-213, April.
    19. Hu, Qian & Lim, Andrew, 2014. "An iterative three-component heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 232(2), pages 276-286.
    20. Calleja, Gema & Corominas, Albert & García-Villoria, Alberto & Pastor, Rafael, 2016. "Hybrid metaheuristics for the Accessibility Windows Assembly Line Balancing Problem Level 2 (AWALBP-L2)," European Journal of Operational Research, Elsevier, vol. 250(3), pages 760-772.

    More about this item

    Keywords

    Simulation Optimization; classification methods; literature survey;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • Z11 - Other Special Topics - - Cultural Economics - - - Economics of the Arts and Literature

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:27652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.