Advanced Search
MyIDEAS: Login

Application of machine learning to short-term equity return prediction

Contents:

Author Info

  • Yan, Robert
  • Nuttall, John
  • Ling, Charles

Abstract

Cooper showed how a filter method could be used to predict equity returns for the next week by using information about returns and volume for the two previous weeks. Cooper's method may be regarded as a crude method of Machine Learning. Over the last 20 years Machine Learning has been successfully applied to the modeling of large data sets, often containing a lot of noise, in many different fields. When applying the technique it is important to fit it to the specific problem under consideration. We have designed and applied to Cooper's problem a practical new method of Machine Learning, appropriate to the problem, that is based on a modification of the well-known kernel regression method. We call it the Prototype Kernel Regression method (PKR). In both the period 1978-1993 studied by Cooper, and the period 1994-2004, the PKR method leads to a clear profit improvement compared to Cooper's approach. In all of 48 different cases studied, the period pre-cost average return is larger for the PKR method than Cooper's method, on average 37% higher, and that margin would increase as costs were taken into account. Our method aims to minimize the danger of data snooping, and it could plausibly have been applied in 1994 or earlier. There may be a lesson here for proponents of the Efficient Market Hypothesis in the form that states that profitable prediction of equity returns is impossible except by chance. It is not enough for them to show that the profits from an anomaly-based trading scheme disappear after costs. The proponents should also consider what would have been plausible applications of more sophisticated Machine Learning techniques before dismissing evidence against the EMH.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/2536/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 2536.

as in new window
Length:
Date of creation: 03 Apr 2006
Date of revision:
Handle: RePEc:pra:mprapa:2536

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hardle, W., 1992. "Applied Nonparametric Methods," Papers 9204, Catholique de Louvain - Institut de statistique.
  2. Oliver LINTON, . "Applied nonparametric methods," Statistic und Oekonometrie 9312, Humboldt Universitaet Berlin.
  3. Cooper, Michael, 1999. "Filter Rules Based on Price and Volume in Individual Security Overreaction," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 901-35.
  4. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
  5. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:2536. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.