Advanced Search
MyIDEAS: Login

On the stick–breaking representation of normalized inverse Gaussian priors

Contents:

Author Info

  • Stefano Favaro

    ()
    (University of Turin and Collegio Carlo Alberto)

  • Antonio Lijoi

    ()
    (Department of Economics and Management, University of Pavia and Collegio Carlo Alberto)

  • Igor Prünster

    ()
    (University of Turin and Collegio Carlo Alberto)

Registered author(s):

    Abstract

    Random probability measures are the main tool for Bayesian nonparametric inference, with their laws acting as prior distributions. Many well–known priors used in practice admit different, though (in distribution) equivalent, representations. Some of these are convenient if one wishes to thoroughly analyze the theoretical properties of the priors being used, others are more useful for modeling dependence and for addressing computational issues. As for the latter purpose, so–called stick–breaking constructions certainly stand out. In this paper we focus on the recently introduced normalized inverse Gaussian process and provide a completely explicit stick–breaking representation for it. Such a new result is of interest both from a theoretical viewpoint and for statistical practice.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://economia.unipv.it/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0008.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by University of Pavia, Department of Economics and Management in its series DEM Working Papers Series with number 008.

    as in new window
    Length: 16 pages
    Date of creation: Oct 2012
    Date of revision:
    Handle: RePEc:pav:demwpp:demwp0008

    Contact details of provider:
    Postal: Via S. Felice, 5 - 27100 Pavia
    Phone: +39/0382/506208
    Fax: +39/0382/304226
    Web page: http://epmq.unipv.eu/site/home.html
    More information through EDIRC

    Related research

    Keywords: Bayesian Nonparametrics; Dirichlet process; Normalized Inverse Gaussian process; Random Probability Measures; Stick–breaking representation.;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "Bayesian Nonparametric Estimation of the Probability of Discovering New Species," Biometrika, Biometrika Trust, vol. 94(4), pages 769-786.
    2. Dunson, David B. & Xue, Ya & Carin, Lawrence, 2008. "The Matrix Stick-Breaking Process: Flexible Bayes Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 317-327, March.
    3. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782.
    4. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    5. C. Yau & O. Papaspiliopoulos & G. O. Roberts & C. Holmes, 2011. "Bayesian non‐parametric hidden Markov models with applications in genomics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 37-57, January.
    6. David B. Dunson & Ju-Hyun Park, 2008. "Kernel stick-breaking processes," Biometrika, Biometrika Trust, vol. 95(2), pages 307-323.
    7. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    8. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    9. Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
    10. Jason A. Duan & Michele Guindani & Alan E. Gelfand, 2007. "Generalized Spatial Dirichlet Process Models," Biometrika, Biometrika Trust, vol. 94(4), pages 809-825.
    11. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2006. "Conjugacy as a Distinctive Feature of the Dirichlet Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association, vol. 33(1), pages 105-120.
    12. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association, vol. 36(1), pages 76-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:demwp0008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alice Albonico).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.