IDEAS home Printed from https://ideas.repec.org/p/osk/wpaper/1631.html
   My bibliography  Save this paper

Technology Diffusion, Pareto Distribution, and Patent Policy

Author

Listed:
  • Keiichi Kishi

    (Graduate School of Economics, Osaka University)

Abstract

We develop a Schumpeterian growth model based on technology diffu- sion. Each firm has a different productivity level. New entrants enter into the targeted industries by learning the existing technologies owned by the other firms. Some of the new entrants succeed to adopt the frontier tech- nology. The other new entrants may adopt the non-frontier technologies. We show that if it is extremely difficult to adopt the frontier technology, the technology diffusion generates the Pareto distributions of firm size, productivity, and innovation size. Further, we introduce the minimum innovation size required for a patent into the model. That is, the patent office grants the patents only for superior inventions. We show that an increase in minimum innovation size may reduce the average patentable innovation size because of an endogenous response of the distribution of innovation size. This implies that if the patent office requires the superior innovations for the patents, it may cause innovators to produce a larger amount of inferior patentable innovations.

Suggested Citation

  • Keiichi Kishi, 2016. "Technology Diffusion, Pareto Distribution, and Patent Policy," Discussion Papers in Economics and Business 16-31, Osaka University, Graduate School of Economics.
  • Handle: RePEc:osk:wpaper:1631
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Jesse Perla & Christopher Tonetti & Michael E. Waugh, 2021. "Equilibrium Technology Diffusion, Trade, and Growth," American Economic Review, American Economic Association, vol. 111(1), pages 73-128, January.
    2. , & Lorenz, Jan & ,, 2016. "Innovation vs. imitation and the evolution of productivity distributions," Theoretical Economics, Econometric Society, vol. 11(3), September.
    3. Xavier Gabaix & Jean‐Michel Lasry & Pierre‐Louis Lions & Benjamin Moll, 2016. "The Dynamics of Inequality," Econometrica, Econometric Society, vol. 84, pages 2071-2111, November.
    4. Robert E. Lucas Jr. & Benjamin Moll, 2014. "Knowledge Growth and the Allocation of Time," Journal of Political Economy, University of Chicago Press, vol. 122(1), pages 1-51.
    5. Benhabib, Jess & Bisin, Alberto & Zhu, Shenghao, 2016. "The Distribution Of Wealth In The Blanchard–Yaari Model," Macroeconomic Dynamics, Cambridge University Press, vol. 20(2), pages 466-481, March.
    6. Silverberg, Gerald & Verspagen, Bart, 2007. "The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance," Journal of Econometrics, Elsevier, vol. 139(2), pages 318-339, August.
    7. Havranek, Tomas & Horvath, Roman & Irsova, Zuzana & Rusnak, Marek, 2015. "Cross-country heterogeneity in intertemporal substitution," Journal of International Economics, Elsevier, vol. 96(1), pages 100-118.
    8. Acemoglu, Daron & Cao, Dan, 2015. "Innovation by entrants and incumbents," Journal of Economic Theory, Elsevier, vol. 157(C), pages 255-294.
    9. Fujiwara, Yoshi & Di Guilmi, Corrado & Aoyama, Hideaki & Gallegati, Mauro & Souma, Wataru, 2004. "Do Pareto–Zipf and Gibrat laws hold true? An analysis with European firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 197-216.
    10. Alexis Akira Toda & Kieran Walsh, 2015. "The Double Power Law in Consumption and Implications for Testing Euler Equations," Journal of Political Economy, University of Chicago Press, vol. 123(5), pages 1177-1200.
    11. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    12. Keiichi Kishi, 2014. "A patentability requirement and industries targeted by R&D," Discussion Papers in Economics and Business 14-27-Rev., Osaka University, Graduate School of Economics, revised Oct 2014.
    13. Reed, William J., 2001. "The Pareto, Zipf and other power laws," Economics Letters, Elsevier, vol. 74(1), pages 15-19, December.
    14. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    15. Gilles Koléda, 2008. "Promoting innovation and competition with patent policy," Journal of Evolutionary Economics, Springer, vol. 18(3), pages 433-453, August.
    16. Jesse Perla & Christopher Tonetti, 2014. "Equilibrium Imitation and Growth," Journal of Political Economy, University of Chicago Press, vol. 122(1), pages 52-76.
    17. Shuhei Aoki & Makoto Nirei, 2016. "Pareto Distribution of Income in Neoclassical Growth Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 20, pages 25-42, April.
    18. Erzo G. J. Luttmer, 2007. "Selection, Growth, and the Size Distribution of Firms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(3), pages 1103-1144.
    19. Chad Jones, 2015. "A Schumpetrerian Model of Top Income Inequality," Annual Meeting Plenary 2015-2, Society for Economic Dynamics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kishi, Keiichi & Okada, Keisuke, 2018. "Trade Liberalization, Technology Diffusion, and Productivity," MPRA Paper 88597, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kishi, Keiichi, 2019. "Technology diffusion, innovation size, and patent policy," European Economic Review, Elsevier, vol. 118(C), pages 382-410.
    2. Jess Benhabib & Jesse Perla & Christopher Tonetti, 2021. "Reconciling Models of Diffusion and Innovation: A Theory of the Productivity Distribution and Technology Frontier," Econometrica, Econometric Society, vol. 89(5), pages 2261-2301, September.
    3. Toda, Alexis Akira, 2019. "Wealth distribution with random discount factors," Journal of Monetary Economics, Elsevier, vol. 104(C), pages 101-113.
    4. Xavier Gabaix & Jean‐Michel Lasry & Pierre‐Louis Lions & Benjamin Moll, 2016. "The Dynamics of Inequality," Econometrica, Econometric Society, vol. 84, pages 2071-2111, November.
    5. Shuhei Aoki & Makoto Nirei, 2014. "Zipf's Law, Pareto's Law, and the Evolution of Top Incomes in the U.S," Working Papers e074, Tokyo Center for Economic Research.
    6. Stachurski, John & Toda, Alexis Akira, 2019. "An impossibility theorem for wealth in heterogeneous-agent models with limited heterogeneity," Journal of Economic Theory, Elsevier, vol. 182(C), pages 1-24.
    7. Michael Knoblach & Fabian Stöckl, 2020. "What Determines The Elasticity Of Substitution Between Capital And Labor? A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 34(4), pages 847-875, September.
    8. Lahr, Henry, 2023. "Fat tails in private equity fund returns: The smooth double Pareto distribution," International Review of Financial Analysis, Elsevier, vol. 86(C).
    9. Émilien Gouin‐Bonenfant & Alexis Akira Toda, 2023. "Pareto extrapolation: An analytical framework for studying tail inequality," Quantitative Economics, Econometric Society, vol. 14(1), pages 201-233, January.
    10. Brendan K. Beare & Alexis Akira Toda, 2022. "Determination of Pareto Exponents in Economic Models Driven by Markov Multiplicative Processes," Econometrica, Econometric Society, vol. 90(4), pages 1811-1833, July.
    11. Kishi, Keiichi & Okada, Keisuke, 2021. "The impact of trade liberalization on productivity distribution under the presence of technology diffusion and innovation," Journal of International Economics, Elsevier, vol. 128(C).
    12. Gouin-Bonenfant, Emilien & Toda, Alexis Akira, 2018. "Pareto Extrapolation: Bridging Theoretical and Quantitative Models of Wealth Inequality," University of California at San Diego, Economics Working Paper Series qt90n2h2bb, Department of Economics, UC San Diego.
    13. Michael König & Kjetil Storesletten & Zheng Song & Fabrizio Zilibotti, 2022. "From Imitation to Innovation: Where Is All That Chinese R&D Going?," Econometrica, Econometric Society, vol. 90(4), pages 1615-1654, July.
    14. Staley, Mark, 2018. "The Knowledge-Diffusion Bottleneck in Economic Growth and Development," MPRA Paper 87255, University Library of Munich, Germany.
    15. Beare, Brendan K & Toda, Alexis Akira, 2020. "On the emergence of a power law in the distribution of COVID-19 cases," University of California at San Diego, Economics Working Paper Series qt9k5027d0, Department of Economics, UC San Diego.
    16. Francisco J. Buera & Ezra Oberfield, 2020. "The Global Diffusion of Ideas," Econometrica, Econometric Society, vol. 88(1), pages 83-114, January.
    17. Staley, Mark, 2015. "Firm Growth and Selection in a Finite Economy," MPRA Paper 67291, University Library of Munich, Germany.
    18. Dan Cao & Wenlan Luo, 2017. "Persistent Heterogeneous Returns and Top End Wealth Inequality," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 26, pages 301-326, October.
    19. Kjetil Storesletten & Bo Zhao & Fabrizio Zilibotti, 2019. "Business Cycle during Structural Change: Arthur Lewis' Theory from a Neoclassical Perspective," Cowles Foundation Discussion Papers 2191, Cowles Foundation for Research in Economics, Yale University.
    20. Kishi, Keiichi & Okada, Keisuke, 2018. "Trade Liberalization, Technology Diffusion, and Productivity," MPRA Paper 88597, University Library of Munich, Germany.

    More about this item

    Keywords

    Technology diffusion; Innovation; Pareto distribution;
    All these keywords.

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osk:wpaper:1631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The Economic Society of Osaka University (email available below). General contact details of provider: https://edirc.repec.org/data/feosujp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.