IDEAS home Printed from https://ideas.repec.org/p/osf/africa/bhuv2.html
   My bibliography  Save this paper

Fitting Wind Speed to a 3-Parameter Distribution Using Maximum Likelihood Technique

Author

Listed:
  • Troon, Benedict

Abstract

Kenya is one of the countries in the world with a good quantity of wind. This makes the country to work on technologies that can help in harnessing the wind with a vision of achieving a total capacity of 2GW of wind energy by 2030. The objective of this research is to find the best three-parameter wind speed distribution for examining wind speed using the maximum likelihood fitting technique. To achieve the objective, the study used hourly wind speed data collected for a period of three years (2016 – 2018) from five sites within Narok County. The study examines the best distributions that the data fits and then conducted a suitability test of the distributions using the Kolmogorov-Smirnov test. The distribution parameters were fitted using maximum likelihood technique and model comparison test conducted using Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) values with the decision rule that the best distribution relies on the distribution with the smaller AIC and BIC values. The research showed that the best distribution is the gamma distribution with the shape parameter of 2.071773, scale parameter of 1.120855, and threshold parameter of 0.1174. A conclusion that gamma distribution is the best three-parameter distribution for examining the Narok country wind speed data

Suggested Citation

  • Troon, Benedict, 2021. "Fitting Wind Speed to a 3-Parameter Distribution Using Maximum Likelihood Technique," AfricArxiv bhuv2, Center for Open Science.
  • Handle: RePEc:osf:africa:bhuv2
    DOI: 10.31219/osf.io/bhuv2
    as

    Download full text from publisher

    File URL: https://osf.io/download/605b75c17d552b01051b08d6/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/bhuv2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren & Liu, Jizhen, 2017. "Measurement and statistical analysis of wind speed intermittency," Energy, Elsevier, vol. 118(C), pages 632-643.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    2. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    3. Yuan, Qiheng & Zhou, Keliang & Yao, Jing, 2020. "A new measure of wind power variability with implications for the optimal sizing of standalone wind power systems," Renewable Energy, Elsevier, vol. 150(C), pages 538-549.
    4. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
    5. Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
    6. Charakopoulos, Avraam & Karakasidis, Theodoros & Sarris, loannis, 2019. "Pattern identification for wind power forecasting via complex network and recurrence plot time series analysis," Energy Policy, Elsevier, vol. 133(C).
    7. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    8. Daniel Suchet & Adrien Jeantet & Thomas Elghozi & Zacharie Jehl, 2020. "Defining and Quantifying Intermittency in the Power Sector," Energies, MDPI, vol. 13(13), pages 1-12, July.
    9. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    10. Ren, Guorui & Liu, Jinfu & Wan, Jie & Li, Fei & Guo, Yufeng & Yu, Daren, 2018. "The analysis of turbulence intensity based on wind speed data in onshore wind farms," Renewable Energy, Elsevier, vol. 123(C), pages 756-766.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:africa:bhuv2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/africarxiv/discover .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.