IDEAS home Printed from https://ideas.repec.org/p/nad/wpaper/20170004.html
   My bibliography  Save this paper

The Hand-Loom Weaver and the Power Loom: A Schumpeterian Perspective REVISED

Author

Listed:
  • Robert C. Allen

    (Division of Social Science)

Abstract

Schumpeter’s ‘perennial gale of creative destruction’ blew strongly through Britain during the Industrial Revolution, as the factory mode of production displaced the cottage mode in many industries. A famous example is the shift from hand loom weaving to the use of power looms in mills. As the use of power looms expanded, the price of cloth fell, and the ‘golden age of the hand loom weaver’ gave way to poverty and unemployment. This paper argues that the fates of the hand and machine processes were even more closely interwoven. With the expansion of factory spinning in the 1780s, the demand for hand loom weavers soared in order to process the newly available cheap yarn. The rise in demand raised the earnings of hand loom weavers, thereby, creating the ‘golden age’. The high earnings also increased the profitability of developing the power loom by raising the value of the labour that it saved. This meant that less efficient–hence, cheaper to develop--power looms could be brought into commercial use than would have been the case had the golden age not occurred. The counterfactual possibilities are explored with a model of the costs of weaving by hand and by power. The cottage mode of production was an efficient system of producing cloth, but it self-destructed as its expansion after 1780 raised the demand for sector-specific skills, thus providing the incentive for inventors to develop a power technology to replace it. The power loom, in turn, devalued the old skills, so poverty accompanied progress.

Suggested Citation

  • Robert C. Allen, 2017. "The Hand-Loom Weaver and the Power Loom: A Schumpeterian Perspective REVISED," Working Papers 20170004, New York University Abu Dhabi, Department of Social Science, revised May 2017.
  • Handle: RePEc:nad:wpaper:20170004
    as

    Download full text from publisher

    File URL: https://nyuad.nyu.edu/content/dam/nyuad/academics/divisions/social-science/working-papers/2017/0004.pdf
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Allen, 2015. "The high wage economy and the industrial revolution: a restatement," Economic History Review, Economic History Society, vol. 68(1), pages 1-22, February.
    2. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    3. Daron Acemoglu, 2010. "When Does Labor Scarcity Encourage Innovation?," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1037-1078.
    4. Lyons, John S., 1987. "Powerloom profitability and steam power costs: Britain in the 1830s," Explorations in Economic History, Elsevier, vol. 24(4), pages 392-408, October.
    5. C. Knick Harley, 2010. "Prices and Profits in Cotton Textiles During the Industrial Revolution," Oxford University Economic and Social History Series _081, Economics Group, Nuffield College, University of Oxford.
    6. North, Douglass C. & Weingast, Barry R., 1989. "Constitutions and Commitment: The Evolution of Institutions Governing Public Choice in Seventeenth-Century England," The Journal of Economic History, Cambridge University Press, vol. 49(4), pages 803-832, December.
    7. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    8. W. Walker Hanlon, 2015. "Necessity Is the Mother of Invention: Input Supplies and Directed Technical Change," Econometrica, Econometric Society, vol. 83, pages 67-100, January.
    9. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    10. Lyons, John Stephen, 1978. "The Lancashire Cotton Industry and the Introduction of the Powerloom, 1815–1850," The Journal of Economic History, Cambridge University Press, vol. 38(1), pages 283-284, March.
    11. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    12. Gregory Clark, 2007. "Introduction to A Farewell to Alms: A Brief Economic History of the World," Introductory Chapters, in: A Farewell to Alms: A Brief Economic History of the World, Princeton University Press.
    13. Harley, C. K., 1973. "On the Persistence of Old Techniques: The Case of North American Wooden Shipbuilding," The Journal of Economic History, Cambridge University Press, vol. 33(2), pages 372-398, June.
    14. C. Knick Harley, 2010. "Prices and Profits in Cotton Textiles During the Industrial Revolution," Oxford Economic and Social History Working Papers _081, University of Oxford, Department of Economics.
    15. Begg,Iain & Henry,Brian, 1998. "Applied Economics and Public Policy," Cambridge Books, Cambridge University Press, number 9780521624145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Allen, 2016. "The Hand-Loom Weaver and the Power Loom: A Schumpeterian Perspective," Oxford Economic and Social History Working Papers _142, University of Oxford, Department of Economics.
    2. Robert C. Allen, 2016. "The Hand-Loom Weaver and the Power Loom: A Schumpeterian Perspective," Oxford University Economic and Social History Series _142, Economics Group, Nuffield College, University of Oxford.
    3. David Andersson & Mounir Karadja & Erik Prawitz, 2022. "Mass Migration and Technological Change," Journal of the European Economic Association, European Economic Association, vol. 20(5), pages 1859-1896.
    4. Taoran Chen & Zhibo Tan & Xiaobo Zhang, 2022. "Does female labor scarcity encourage innovation? Evidence from China's gender imbalance," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(2), pages 418-447, April.
    5. Hémous, David & Dechezleprêtre, Antoine & Olsen, Morten & Zanella, carlo, 2019. "Automating Labor: Evidence from Firm-level Patent Data," CEPR Discussion Papers 14249, C.E.P.R. Discussion Papers.
    6. Julián D. Gómez, 2018. "¿Qué determina la adopción de tecnologías para la generación de energías renovables entre países?," Documentos CEDE 17132, Universidad de los Andes, Facultad de Economía, CEDE.
    7. Allen, Robert C., 2014. "American Exceptionalism as a Problem in Global History," The Journal of Economic History, Cambridge University Press, vol. 74(2), pages 309-350, June.
    8. Philip T. Hoffman, 2020. "The Great Divergence: Why Britain Industrialised First," Australian Economic History Review, Economic History Society of Australia and New Zealand, vol. 60(2), pages 126-147, July.
    9. Robert C. Allen, 2019. "Class structure and inequality during the industrial revolution: lessons from England's social tables, 1688–1867," Economic History Review, Economic History Society, vol. 72(1), pages 88-125, February.
    10. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    11. Queiroz, Pedro & Fulginiti, Lilyan & Perrin, Richard, 2021. "Induced Innovation in South American Agriculture: Deforestation and Directed Technical Change," 2021 Conference, August 17-31, 2021, Virtual 315416, International Association of Agricultural Economists.
    12. David Hémous & Morten Olsen, 2022. "The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(1), pages 179-223, January.
    13. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    14. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    15. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    16. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    17. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    18. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    19. Martin Beraja & David Y Yang & Noam Yuchtman, 2023. "Data-intensive Innovation and the State: Evidence from AI Firms in China," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1701-1723.
    20. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nad:wpaper:20170004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alizeh Batra (email available below). General contact details of provider: https://edirc.repec.org/data/ecnyuae.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.