Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Risk Management Approach for Portfolio Insurance Strategies

Contents:

Author Info

Abstract

Controlling and managing potential losses is one of the main objectives of the Risk Management. Following Ben Ameur and Prigent (2007) and Chen et al. (2008), and extending the first results by Hamidi et al. (2009) when adopting a risk management approach for defining insurance portfolio strategies, we analyze and illustrate a specific dynamic portfolio insurance strategy depending on the Value-at-Risk level of the covered portfolio on the French stock market. This dynamic approach is derived from the traditional and popular portfolio insurance strategy (Cf. Black and Jones, 1987 ; Black and Perold, 1992) : the so-called "Constant Proportion Portfolio Insurance" (CPPI). However, financial results produced by this strategy crucially depend upon the leverage - called the multiple - likely guaranteeing a predetermined floor value whatever the plausible market evolutions. In other words, the unconditional multiple is defined once and for all in the traditional setting. The aim of this article is to further examine an alternative to the standard CPPI method, based on the determination of a conditional multiple. In this time-varying framework, the multiple is conditionally determined in order to remain the risk exposure constant, even if it also depends upon market conditions. Furthermore, we propose to define the multiple as a function of an extended Dynamic AutoRegressive Quantile model of the Value-at-Risk (DARQ-VaR). Using a French daily stock database (CAC 40) and individual stocks in the period 1998-2008), we present the main performance and risk results of the proposed Dynamic Proportion Portfolio Insurance strategy, first on real market data and secondly on artificial bootstrapped and surrogate data. Our main conclusion strengthens the previous ones : the conditional Dynamic Strategy with Constant-risk exposure dominates most of the time the traditional Constant-asset exposure unconditional strategies.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2009/09034.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne in its series Documents de travail du Centre d'Economie de la Sorbonne with number 09034.

as in new window
Length: 16 pages
Date of creation: May 2009
Date of revision:
Handle: RePEc:mse:cesdoc:09034

Contact details of provider:
Postal: 106-112 boulevard de l'Hôpital 75 647 PARIS CEDEX 13
Phone: + 33 44 07 81 00
Fax: + 33 1 44 07 83 01
Web page: http://centredeconomiesorbonne.univ-paris1.fr/
More information through EDIRC

Related research

Keywords: CPPI; portfolio insurance; VaR; CAViaR; quantile regression; dynamic quantile model.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ben Ameur, H. & Prigent, J.L., 2014. "Portfolio insurance: Gap risk under conditional multiples," European Journal of Operational Research, Elsevier, vol. 236(1), pages 238-253.
  2. Benjamin Hamidi & Bertrand Maillet & Jean-Luc Prigent, 2014. "A Dynamic AutoRegressive Expectile for Time-Invariant Portfolio Protection Strategies," Working Papers halshs-01015390, HAL.
  3. Zieling, Daniel & Mahayni, Antje & Balder, Sven, 2014. "Performance evaluation of optimized portfolio insurance strategies," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 212-225.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:09034. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.