Advanced Search
MyIDEAS: Login

An Extension of the Concordet Criterion and Kemeny Orders


Author Info

  • Truchon, Michel



The usual Condorcet Criterion says that if an alternative is ranked ahead of all other alternatives by an absolute majority of voters, it should be declared the winner. The following partial extension of this criterion to other ranks is proposed: If an alternative is consistently ranked ahead of another alternative by an absolute majority of voters, it should be ahead in the final ranking. The term "consistently" refers to the absence of cycles in the majority relation involving these two alternatives. If there are cycles, this criterion gives partial orders that can be completed with the Kemeny rule. An algorithm to construct Kemeny orders is presented. It is based on a result saying that a complete Kemeny order over all alternatives can be obtained by splicing together Kemeny orders on the subsets of an admissible partition of the alternatives underlying the Extended Condorcet Criterion. Le critère usuel de Condorcet exige que, si une alternative est classée avant toutes les autres par une majorité de votants, elle devrait être déclarée vainqueur. Une extension partielle de ce critère aux autres rangs est proposée: Si une alternative est classée avant une autre de manière cohérente par une majorité de votants, elle devrait l'être dans le classement final. La cohérence réfère à l'absence de cycle dans la relation majoritaire impliquant ces deux alternatives. En cas de cycles, ce critère donne des ordres partiels, qui peuvent être complétés avec la règle de Kemeny. Un algorithme pour la construction des ordres de Kemeny est présenté. Il s'appuie sur un résultat affirmant qu'un ordre de Kemeny peut être obtenu en juxtaposant des ordres de Kemeny sur les sous-ensembles d'une partition des alternatives sous-jacente au critère de Condorcet généralisé.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: no

Bibliographic Info

Paper provided by Université Laval - Département d'économique in its series Cahiers de recherche with number 9813.

as in new window
Date of creation: 1998
Date of revision:
Handle: RePEc:lvl:laeccr:9813

Contact details of provider:
Postal: Pavillon J.A. De Sève, Québec, Québec, G1K 7P4
Phone: (418) 656-5122
Fax: (418) 656-2707
Web page:
More information through EDIRC

Related research

Keywords: aggregation; Condorcet Criterion; Kemeny orders; algorithm;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Giuseppe Munda, 2012. "Choosing Aggregation Rules for Composite Indicators," Social Indicators Research, Springer, vol. 109(3), pages 337-354, December.
  2. Truchon, M., 1996. "La democratie: oui, mais laquelle?," Papers 9610, Laval - Recherche en Politique Economique.
  3. Michel Truchon, 2002. "Choix social et comités de sélection : le cas du patinage artistique," CIRANO Burgundy Reports 2002rb-02, CIRANO.
  4. Gamboa, Gonzalo & Munda, Giuseppe, 2007. "The problem of windfarm location: A social multi-criteria evaluation framework," Energy Policy, Elsevier, vol. 35(3), pages 1564-1583, March.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:lvl:laeccr:9813. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Johanne Perron).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.