Advanced Search
MyIDEAS: Login to save this paper or follow this series

Neural Networks for Cross-Sectional Employment Forecasts: A Comparison of Model Specifications for Germany

Contents:

Author Info

  • Roberto Patuelli

    ()
    (Institute for Economic Research (IRE), University of Lugano, Switzerland; The Rimini Centre for Economic Analysis, Italy)

  • Aura Reggiani

    ()
    (Department of Economics, University of Bologna, Italy)

  • Peter Nijkamp

    ()
    (Department of Spatial Economics, VU University Amsterdam, The Netherlands)

  • Norbert Schanne

    ()
    (Institute for Employment Research (IAB), Nuremberg, Germany)

Abstract

In this paper, we present a review of various computational experiments – and consequent results – concerning Neural Network (NN) models developed for regional employment forecasting. NNs are widely used in several fields because of their flexible specification structure. Their utilization in studying/predicting economic variables, such as employment or migration, is justified by the ability of NNs of learning from data, in other words, of finding functional relationships – by means of data – among the economic variables under analysis. A series of NN experiments is presented in the paper. Using two data sets on German NUTS 3 districts (326 and 113 labour market districts in the former West and East Germany, respectively), the results emerging from the implementation of various NN models – in order to forecast variations in full-time employment – are provided and discussed In our approach, single forecasts are computed by the models for each district. Different specifications of the NN models are first tested in terms of: (a) explanatory variables; and (b) NN structures. The average statistical results of simulated out-of-sample forecasts on different periods are summarized and commented on. In addition to variable and structure specification, the choice of NN learning parameters and internal functions is also critical to the success of NNs. Comprehensive testing of these parameters is, however, limited in the literature. A sensitivity analysis is therefore carried out and discussed, in order to evaluate different combinations of NN parameters. The paper concludes with methodological and empirical remarks, as well as with suggestions for future research.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://doc.rero.ch/lm.php?url=1000,42,6,20090227094322-PS/wp0903.pdf
Download Restriction: no

Bibliographic Info

Paper provided by USI Università della Svizzera italiana in its series Quaderni della facoltà di Scienze economiche dell'Università di Lugano with number 0903.

as in new window
Length: 15 pages
Date of creation: Feb 2009
Date of revision:
Handle: RePEc:lug:wpaper:0903

Contact details of provider:
Web page: https://www.bul.sbu.usi.ch

Related research

Keywords: neural networks; sensitivity analysis; employment forecasts; Germany;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: an Analysis of German Labour Markets," Spatial Economic Analysis, Taylor & Francis Journals, vol. 1(1), pages 7-30.
  2. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2009. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," Working Paper Series 02_09, The Rimini Centre for Economic Analysis, revised May 2010.
  3. Roberto Patuelli & Simonetta Longhi & Aura Reggiani & Peter Nijkamp, 2008. "Neural networks and genetic algorithms as forecasting tools: a case study on German regions," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 35(4), pages 701-722, July.
  4. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
  5. Suahasil Nazara & Geoffrey J.D. Hewings, 2004. "Spatial Structure and Taxonomy of Decomposition in Shift-Share Analysis," Growth and Change, Gatton College of Business and Economics, University of Kentucky, vol. 35(4), pages 476-490.
  6. Gorr, Wilpen L. & Nagin, Daniel & Szczypula, Janusz, 1994. "Comparative study of artificial neural network and statistical models for predicting student grade point averages," International Journal of Forecasting, Elsevier, vol. 10(1), pages 17-34, June.
  7. Aura Reggiani & Roberto Patuelli & Peter Nijkamp, 2006. "The development of Regional employment in Germany: Results from Neural Network Experiments," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2006(3).
  8. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-64, Oct.-Dec..
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Gromicho, J.A.S. & Hoorn, J.J. van & Timmer, G.T., 2009. "Exponentially better than brute force: solving the jobshop scheduling problem optimally by dynamic programming," Serie Research Memoranda 0056, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:lug:wpaper:0903. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alessio Tutino).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.