Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Simple Estimator for Dynamic Models with Serially Correlated Unobservables

Contents:

Author Info

  • Yingyao Hu
  • Matthew Shum
  • Wei Tan

Abstract

We present a method for estimating Markov dynamic models with unobserved state variables which can be serially correlated over time. We focus on the case where all the model variables have discrete support. Our estimator is simple to compute because it is noniterative, and involves only elementary matrix manipulations. Our estimation method is nonparametric, in that no parametric assumptions on the distributions of the unobserved state variables or the laws of motions of the state variables are required. Monte Carlo simulations show that the estimator performs well in practice, and we illustrate its use with a dataset of doctors' prescription of pharmaceutical drugs.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econ.jhu.edu/wp-content/uploads/pdf/papers/wp558.pdf
Download Restriction: no

Bibliographic Info

Paper provided by The Johns Hopkins University,Department of Economics in its series Economics Working Paper Archive with number 558.

as in new window
Length:
Date of creation: May 2010
Date of revision:
Handle: RePEc:jhu:papers:558

Contact details of provider:
Postal: 3400 North Charles Street Baltimore, MD 21218
Phone: 410-516-7601
Fax: 410-516-7600
Web page: http://www.econ.jhu.edu
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Heckman, James J. & Navarro, Salvador, 2005. "Dynamic Discrete Choice and Dynamic Treatment Effects," IZA Discussion Papers 1790, Institute for the Study of Labor (IZA).
  2. Flavio Cunha & James Heckman & Susanne Schennach, 2010. "Estimating the technology of cognitive and noncognitive skill formation," CeMMAP working papers CWP09/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  3. Ariel Pakes & Michael Ostrovsky & Steve Berry, 2004. "Simple Estimators for the Parameters of Discrete Dynamic Games (with Entry/Exit Examples)," Harvard Institute of Economic Research Working Papers 2036, Harvard - Institute of Economic Research.
  4. Jonathan Levin (Stanford University) & Pat Bajari & Lanier Benkard, 2004. "Estimating Dynamic Models of Imperfect Competition," Econometric Society 2004 North American Winter Meetings 627, Econometric Society.
  5. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-84, July.
  6. Martin Pesendorfer & Philipp Schmidt-Dengler, 2008. "Asymptotic Least Squares Estimators for Dynamic Games -super-1," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 901-928.
  7. Victor Aguirregabiria & Pedro Mira, 2004. "Sequential Estimation Of Dynamic Discrete Games," Working Papers wp2004_0413, CEMFI.
  8. Magnac & Thesmar, 2002. "Identifying dynamic discrete decision processes," Working Papers 155888, Institut National de la Recherche Agronomique, France.
  9. Hotz, V.J. & Miller, R.A., 1991. "Conditional Choice Probabilities and the Estimation of Dynamic Models," GSIA Working Papers 1992-12, Carnegie Mellon University, Tepper School of Business.
  10. Yingyao Hu & Matthew Shum, 2008. "Nonparametric Identification of Dynamic Models with Unobserved State Variables," Economics Working Paper Archive 543, The Johns Hopkins University,Department of Economics.
  11. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
  12. Victor Aguirregabiria & Pedro Mira, 2002. "Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models," Econometrica, Econometric Society, vol. 70(4), pages 1519-1543, July.
  13. Sridhar Narayanan & Puneet Manchanda, 2009. "Heterogeneous Learning and the Targeting of Marketing Communication for New Products," Marketing Science, INFORMS, vol. 28(3), pages 424-441, 05-06.
  14. Michael P. Keane & Kenneth I. Wolpin, 1994. "The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence," Staff Report 181, Federal Reserve Bank of Minneapolis.
  15. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, 09.
  16. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
  17. Abbring, Jaap H. & Heckman, James J., 2007. "Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 72 Elsevier.
  18. Jason R. Blevins, 2011. "Sequential Monte Carlo Methods for Estimating Dynamic Microeconomic Models," Working Papers 11-01, Ohio State University, Department of Economics.
  19. Miller, Robert A, 1984. "Job Matching and Occupational Choice," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 1086-120, December.
  20. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
  21. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, 01.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jhu:papers:558. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (None) The email address of this maintainer does not seem to be valid anymore. Please ask None to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.