Advanced Search
MyIDEAS: Login to save this paper or follow this series

Optimal uniform convergence rates for sieve nonparametric instrumental variables regression

Contents:

Author Info

  • Xiaohong Chen

    (Institute for Fiscal Studies and Yale University)

  • Timothy Christensen
Registered author(s):

    Abstract

    We study the problem of nonparametric regression when the regressor is endogenous, which is an important nonparametric instrumental variables (NPIV) regression in econometrics and a difficult ill-posed inverse problem with unknown operator in statistics. We first establish a general upper bound on the sup-norm (uniform) convergence rate of a sieve estimator, allowing for endogenous regressors and weakly dependent data. This result leads to the optimal sup-norm convergence rates for spline and wavelet least squares regression estimators under weakly dependent data and heavy-tailed error terms. This upper bound also yields the sup-norm convergence rates for sieve NPIV estimators under i.i.d. data: the rates coincide with the known optimal L2- norm rates for severely ill-posed problems, and are power of log (n) slower than the optimal L2- norm rates for mildly ill-posed problems. We then establish the minimax risk lower bound in sup-norm loss, which coincides with our upper bounds on sup-norm rates for the spline and wavelet sieve NPIV estimators. This sup-norm rate optimality provides another justification for the wide application of sieve NPIV estimators. Useful results on weakly-dependent random matricies are also provided.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.cemmap.ac.uk/wps/cwp561313.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP56/13.

    as in new window
    Length:
    Date of creation: Nov 2013
    Date of revision:
    Handle: RePEc:ifs:cemmap:56/13

    Contact details of provider:
    Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
    Phone: (+44) 020 7291 4800
    Fax: (+44) 020 7323 4780
    Email:
    Web page: http://cemmap.ifs.org.uk
    More information through EDIRC

    Order Information:
    Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
    Email:

    Related research

    Keywords:

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Chen, Xiaohong & Reiss, Markus, 2011. "On Rate Optimality For Ill-Posed Inverse Problems In Econometrics," Econometric Theory, Cambridge University Press, vol. 27(03), pages 497-521, June.
    2. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    3. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, 09.
    4. Joel L. Horowitz, 2011. "Applied Nonparametric Instrumental Variables Estimation," Econometrica, Econometric Society, vol. 79(2), pages 347-394, 03.
    5. de Jong, Robert M., 2002. "A note on "Convergence rates and asymptotic normality for series estimators": uniform convergence rates," Journal of Econometrics, Elsevier, vol. 111(1), pages 1-9, November.
    6. Gagliardini, Patrick & Scaillet, Olivier, 2012. "Tikhonov regularization for nonparametric instrumental variable estimators," Journal of Econometrics, Elsevier, vol. 167(1), pages 61-75.
    7. Cohen, Albert & Hoffmann, Marc & Reiß, Markus, 2002. "Adaptive wavelet Galerkin methods for linear inverse problems," SFB 373 Discussion Papers 2002,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    9. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:56/13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.