Advanced Search
MyIDEAS: Login

Instrumental Regression in Partially Linear Models

Contents:

Author Info

  • Florens, Jean-Pierre
  • Johannes, Jan
  • Van Bellegem, Sébastien

Abstract

We consider the semiparametric regression Xtβ+φ(Z) where β and φ(·) are unknown slope coefficient vector and function, and where the variables (X,Z) are endogeneous. We propose necessary and sufficient conditions for the identification of the parameters in the presence of instrumental variables. We also focus on the estimation of β. An incorrect parameterization of φ may generally lead to an inconsistent estimator of β, whereas even consistent nonparametric estimators for φ imply a slow rate of convergence of the estimator of β. An additional complication is that the solution of the equation necessitates the inversion of a compact operator that has to be estimated nonparametrically. In general this inversion is not stable, thus the estimation of β is ill-posed. In this paper, a √n-consistent estimator for β is derived under mild assumptions. One of these assumptions is given by the so-called source condition that is explicitly interprated in the paper. Finally we show that the estimator achieves the semiparametric efficiency bound, even if the model is heteroscedastic. Monte Carlo simulations demonstrate the reasonable performance of the estimation procedure on finite samples.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tse-fr.eu/images/doc/wp/etrie/10-167.pdf
File Function: Full text
Download Restriction: no

Bibliographic Info

Paper provided by Toulouse School of Economics (TSE) in its series TSE Working Papers with number 10-167.

as in new window
Length:
Date of creation: Sep 2009
Date of revision:
Handle: RePEc:tse:wpaper:22820

Contact details of provider:
Phone: (+33) 5 61 12 86 23
Web page: http://www.tse-fr.eu/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
  2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
  3. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function is not Smooth," STICERD - Econometrics Paper Series /2003/450, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-54, July.
  5. Richard Blundell & Joel Horowitz, 2004. "A nonparametric test of exogeneity," CeMMAP working papers CWP15/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  6. Newey, W.K., 1989. "Efficient Instrumental Variables Estimation Of Nonlinear Models," Papers 341, Princeton, Department of Economics - Econometric Research Program.
  7. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
  8. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Kapetanios, George & Marcellino, Massimiliano, 2010. "Factor-GMM estimation with large sets of possibly weak instruments," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2655-2675, November.
  2. Johannes, Jan & Van Bellegem, Sébastien & Vanhems, Anne, 2009. "Convergence Rates for III-Posed Inverse Problems with an Unknown Operator," TSE Working Papers 09-030, Toulouse School of Economics (TSE).
  3. FLORENS, Jean-Pierre & JOHANNES, Jan & VAN BELLEGEM, Sébastien, 2007. "Identification and estimation by penalization in nonparametric instrumental regression," CORE Discussion Papers 2007085, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney Newey, 2011. "Local Identification of Nonparametric and Semiparametric Models," Cowles Foundation Discussion Papers 1795, Cowles Foundation for Research in Economics, Yale University.
  5. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
  6. Senay Sokullu, 2012. "Nonparametric Estimation of Semiparametric Transformation Models," Bristol Economics Discussion Papers 12/625, Department of Economics, University of Bristol, UK.
  7. Gao, Jiti & Phillips, Peter C.B., 2013. "Semiparametric estimation in triangular system equations with nonstationarity," Journal of Econometrics, Elsevier, vol. 176(1), pages 59-79.
  8. Xiaohong Chen & Yingyao Hu, 2006. "Identification and Inference of Nonlinear Models Using Two Samples with Arbitrary Measurement Errors," Cowles Foundation Discussion Papers 1590, Cowles Foundation for Research in Economics, Yale University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:22820. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.