IDEAS home Printed from https://ideas.repec.org/p/ias/cpaper/10-wp511.html
   My bibliography  Save this paper

Testing Day's Conjecture that More Nitrogen Decreases Crop Yield Skewness

Author

Abstract

While controversy surrounds skewness attributes of typical yield distributions, a better understanding is important for agricultural policy assessment and for crop insurance rate setting. Day (1965) conjectured that crop yield skewness declines with an increase in low levels of nitrogen use, but higher levels have no effect. In a theoretical model based on the law of the minimum (von Liebig) technology, we find conditions under which Day's conjecture applies. Employing four experimental plot datasets, we investigate the conjecture by introducing (a) a flexible Bayesian extension of the Just-Pope technology to incorporate skewness, and (b) a quantile-based measure of skewness shift. For corn yields, the Bayesian estimation provides strong evidence in favor of negative skewness at commercial nitrogen rates and for Day's conjecture. There was weaker evidence in favor of positively skewed cotton yield and little evidence in favor of the conjecture. The results are also confirmed by the quantile-based measure.

Suggested Citation

  • Xiaodong Du & David A. Hennessy & Cindy L. Yu, 2010. "Testing Day's Conjecture that More Nitrogen Decreases Crop Yield Skewness," Center for Agricultural and Rural Development (CARD) Publications 10-wp511, Center for Agricultural and Rural Development (CARD) at Iowa State University.
  • Handle: RePEc:ias:cpaper:10-wp511
    as

    Download full text from publisher

    File URL: https://www.card.iastate.edu/products/publications/pdf/10wp511.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://www.card.iastate.edu/products/publications/synopsis/?p=1143
    File Function: Online Synopsis
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard H. Day, 1965. "Probability Distributions of Field Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 47(3), pages 713-741.
    2. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    3. Richard E. Just & Quinn Weninger, 1999. "Are Crop Yields Normally Distributed?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(2), pages 287-304.
    4. Tian Yu & Bruce A. Babcock, 2010. "Are U.S. Corn and Soybeans Becoming More Drought Tolerant?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1310-1323.
    5. john M. Antle, 2010. "Asymmetry, Partial Moments, and Production Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1294-1309.
    6. Phoebe Koundouri & Nikolaos Kourogenis, 2011. "On the Distribution of Crop Yields: Does the Central Limit Theorem Apply?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1341-1357.
    7. Bruce A. Babcock & David A. Hennessy, 1996. "Input Demand under Yield and Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 416-427.
    8. Octavio A. Ramirez & Sukant Misra & James Field, 2003. "Crop-Yield Distributions Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 108-120.
    9. Mitchell, Paul D., 2004. "Nutrient Best Management Practice Insurance and Farmer Perceptions of Adoption Risk," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(3), pages 657-673, December.
    10. David A. Hennessy, 2009. "Crop Yield Skewness Under Law of the Minimum Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 197-208.
    11. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    12. W. Henry Chiu, 2005. "Skewness Preference, Risk Aversion, and the Precedence Relations on Stochastic Changes," Management Science, INFORMS, vol. 51(12), pages 1816-1828, December.
    13. Seo, Sangtaek & Mitchell, Paul D. & Leatham, David J., 2005. "Effects of Federal Risk Management Programs on Optimal Acreage Allocation and Nitrogen Use in a Texas Cotton–Sorghum System," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(3), pages 685-699, December.
    14. Terrell, Dek, 1996. "Incorporating Monotonicity and Concavity Conditions in Flexible Functional Forms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 179-194, March-Apr.
    15. Richard E. Just & Rulon D. Pope, 1979. "Production Function Estimation and Related Risk Considerations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(2), pages 276-284.
    16. David A. Hennessy, 2006. "On Monoculture and the Structure of Crop Rotations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 900-914.
    17. Carl H. Nelson & Paul V. Preckel, 1989. "The Conditional Beta Distribution as a Stochastic Production Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 370-378.
    18. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    19. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    20. Salvatore Di Falco & Jean-Paul Chavas, 2007. "On Crop Biodiversity, Risk Exposure, and Food Security in the Highlands of Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(3), pages 599-611.
    21. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108437493, January.
    22. Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2006. "Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(3), pages 657-670.
    23. Antle, John M, 1983. "Testing the Stochastic Structure of Production: A Flexible Moment-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 192-201, July.
    24. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    25. Seo, Sangtaek & Mitchell, Paul D. & Leatham, David J., 2005. "Effects of Federal Risk Management Programs on Optimal Acreage Allocation and Nitrogen Use in a Texas Cotton-Sorghum System," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 37(3), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    2. Yu, Tian, 2011. "Three essays on weather and crop yield," ISU General Staff Papers 201101010800002976, Iowa State University, Department of Economics.
    3. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    4. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    5. Jesse Tack & Andrew Barkley & Lawton Nalley, 2014. "Heterogeneous effects of warming and drought on selected wheat variety yields," Climatic Change, Springer, vol. 125(3), pages 489-500, August.
    6. Du, Xiaodong & Hennessy, David & Feng, Hongli, 2014. "Tail Dependence is to be Expected Among Crop Yields," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 174315, Agricultural and Applied Economics Association.
    7. Xiaodong Du & Cindy L. Yu & David A. Hennessy & Ruiqing Miao, 2015. "Geography of crop yield skewness," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 463-473, July.
    8. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    9. Menale Kassie & Hailemariam Teklewold & Paswel Marenya & Moti Jaleta & Olaf Erenstein, 2015. "Production Risks and Food Security under Alternative Technology Choices in Malawi: Application of a Multinomial Endogenous Switching Regression," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 640-659, September.
    10. Agarwal, Sandip & Jacobs, Keri L. & Weninger, Quinn, 2016. "Unfolding the Bias in Farm Nitrogen Management," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 237380, Agricultural and Applied Economics Association.
    11. Brorsen, B. Wade, 2013. "Using Bayesian Estimation and Decision Theory to Determine the Optimal Level of Nitrogen in Cotton," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 142951, Southern Agricultural Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    2. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    3. Xiaodong Du & Cindy L. Yu & David A. Hennessy & Ruiqing Miao, 2015. "Geography of crop yield skewness," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 463-473, July.
    4. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    5. Woodard, Joshua D. & Chiu Verteramo, Leslie & Miller, Alyssa P., 2015. "Adaptation of U.S. Agricultural Production to Drought and Climate Change," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205903, Agricultural and Applied Economics Association.
    6. Nauges, Céline & Bougherara, Douadia & Koussoubé, Estelle, 2021. "Fertilizer use and risk: New evidence from Sub-Saharan Africa," TSE Working Papers 21-1266, Toulouse School of Economics (TSE).
    7. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    8. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    9. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    10. Hennessy, David A., 2009. "Crop Yield Skewness and the Normal Distribution," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-19, April.
    11. Nolan, Elizabeth & Santos, Paulo, 2012. "Insurance premiums and GM traits," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 125942, International Association of Agricultural Economists.
    12. Sengupta, Sanchita, 2010. "Three Essays in Environmental and Agricultural Issues," ISU General Staff Papers 201001010800002848, Iowa State University, Department of Economics.
    13. Arora, Gaurav & Agarwal, Sandip K., 2020. "Agricultural input use and index insurance adoption: Concept and evidence," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304508, Agricultural and Applied Economics Association.
    14. Buchholz, Matthias & Musshoff, Oliver, 2014. "The role of weather derivatives and portfolio effects in agricultural water management," Agricultural Water Management, Elsevier, vol. 146(C), pages 34-44.
    15. Gerlt, Scott & Thompson, Wyatt & Miller, Douglas, 2014. "Exploiting the Relationship between Farm-Level Yields and County-Level Yields for Applied Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-18.
    16. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    17. Jutta Roosen & David A. Hennessy, 2003. "Tests for the Role of Risk Aversion on Input Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 30-43.
    18. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    19. Luigi Biagini & Simone Severini, 2022. "How Does the Farmer Strike a Balance between Income and Risk across Inputs? An Application in Italian Field Crop Farms," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    20. Salvatore Falco & Marcella Veronesi, 2018. "Managing Environmental Risk in Presence of Climate Change: The Role of Adaptation in the Nile Basin of Ethiopia," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 497-526, Springer.

    More about this item

    Keywords

    crop insurance; Gibbs sampler; Just and Pope technology; negative skewness; quantile regression.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ias:cpaper:10-wp511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/caiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.