Advanced Search
MyIDEAS: Login to save this paper or follow this series

Statistics of Risk Aversion

Contents:

Author Info

  • Enzo Giacomini
  • Wolfgang Härdle

Abstract

Information about risk preferences from investors is essential for modelling a wide range of quantitative finance applications. Valuable information related to preferences can be extracted from option prices through pricing kernels. In this paper, pricing kernels and their term structure are estimated in a time varying approach from DAX and ODAX data using dynamic semiparametric factor model (DSFM). DSFM smooths in time and space simultaneously, approximating complex dynamic structures by basis functions and a time series of loading coefficients. Contradicting standard risk aversion assumptions, the estimated pricing kernels indicate risk proclivity in certain levels of return. The analysis of the time series of loading coefficients allows a better understanding of the dynamic behaviour from investors preferences towards risk.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2007-025.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2007-025.

as in new window
Length: 11 pages
Date of creation: May 2007
Date of revision:
Handle: RePEc:hum:wpaper:sfb649dp2007-025

Contact details of provider:
Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Email:
Web page: http://sfb649.wiwi.hu-berlin.de
More information through EDIRC

Related research

Keywords: Dynamic Semiparametric Estimation; Pricing Kernel; Risk Aversion.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Yacine Ait-Sahalia & Andrew W. Lo, 2000. "Nonparametric Risk Management and Implied Risk Aversion," NBER Working Papers 6130, National Bureau of Economic Research, Inc.
  2. Szymon Borak & Wolfgang Härdle & Enno Mammen & Byeong U. Park, 2007. "Time Series Modelling with Semiparametric Factor Dynamics," SFB 649 Discussion Papers SFB649DP2007-023, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  3. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Volodymyr Perederiy, 2007. "Kombinierte Liquiditäts- und Solvenzkennzahlen und ein darauf basierendes Insolvenzprognosemodell für deutsche GmbHs," SFB 649 Discussion Papers SFB649DP2007-060, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  2. Yuri Golubev & Wolfgang Härdle & Roman Timonfeev, 2008. "Testing Monotonicity of Pricing Kernels," SFB 649 Discussion Papers SFB649DP2008-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2007-025. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.